test_cumsum_op.py 16.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
E
emailweixu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
WangZhen 已提交
15 16
import os
import tempfile
17 18
import unittest

E
emailweixu 已提交
19
import numpy as np
20
from op_test import OpTest
21

22
import paddle
23
import paddle.fluid as fluid
24 25
import paddle.fluid.core as core
import paddle.inference as paddle_infer
26 27 28 29 30


class TestCumsumOp(unittest.TestCase):
    def run_cases(self):
        data_np = np.arange(12).reshape(3, 4)
Z
Zhou Wei 已提交
31
        data = paddle.to_tensor(data_np)
32 33 34

        y = paddle.cumsum(data)
        z = np.cumsum(data_np)
35
        np.testing.assert_array_equal(z, y.numpy())
36 37 38

        y = paddle.cumsum(data, axis=0)
        z = np.cumsum(data_np, axis=0)
39
        np.testing.assert_array_equal(z, y.numpy())
40 41 42

        y = paddle.cumsum(data, axis=-1)
        z = np.cumsum(data_np, axis=-1)
43
        np.testing.assert_array_equal(z, y.numpy())
44 45 46 47 48 49 50 51 52

        y = paddle.cumsum(data, dtype='float64')
        self.assertTrue(y.dtype == core.VarDesc.VarType.FP64)

        y = paddle.cumsum(data, dtype=np.int32)
        self.assertTrue(y.dtype == core.VarDesc.VarType.INT32)

        y = paddle.cumsum(data, axis=-2)
        z = np.cumsum(data_np, axis=-2)
53
        np.testing.assert_array_equal(z, y.numpy())
54 55 56 57

    def run_static(self, use_gpu=False):
        with fluid.program_guard(fluid.Program()):
            data_np = np.random.random((100, 100)).astype(np.float32)
58
            x = paddle.static.data('X', [100, 100])
59 60 61 62 63 64 65 66 67 68
            y = paddle.cumsum(x)
            y2 = paddle.cumsum(x, axis=0)
            y3 = paddle.cumsum(x, axis=-1)
            y4 = paddle.cumsum(x, dtype='float64')
            y5 = paddle.cumsum(x, dtype=np.int32)
            y6 = paddle.cumsum(x, axis=-2)

            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
69 70 71 72 73 74 75 76 77 78 79
            out = exe.run(
                feed={'X': data_np},
                fetch_list=[
                    y.name,
                    y2.name,
                    y3.name,
                    y4.name,
                    y5.name,
                    y6.name,
                ],
            )
80 81

            z = np.cumsum(data_np)
82
            np.testing.assert_allclose(z, out[0], rtol=1e-05)
83
            z = np.cumsum(data_np, axis=0)
84
            np.testing.assert_allclose(z, out[1], rtol=1e-05)
85
            z = np.cumsum(data_np, axis=-1)
86
            np.testing.assert_allclose(z, out[2], rtol=1e-05)
87 88 89
            self.assertTrue(out[3].dtype == np.float64)
            self.assertTrue(out[4].dtype == np.int32)
            z = np.cumsum(data_np, axis=-2)
90
            np.testing.assert_allclose(z, out[5], rtol=1e-05)
91 92

    def test_cpu(self):
93 94 95
        paddle.disable_static(paddle.fluid.CPUPlace())
        self.run_cases()
        paddle.enable_static()
96 97 98 99 100 101

        self.run_static()

    def test_gpu(self):
        if not fluid.core.is_compiled_with_cuda():
            return
102 103 104
        paddle.disable_static(paddle.fluid.CUDAPlace(0))
        self.run_cases()
        paddle.enable_static()
105 106 107 108 109

        self.run_static(use_gpu=True)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
110
            x = paddle.static.data('x', [3, 4])
111 112
            y = paddle.cumsum(x, name='out')
            self.assertTrue('out' in y.name)
E
emailweixu 已提交
113 114 115 116 117


class TestSumOp1(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
118 119
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
120
        self.enable_cinn = True
E
emailweixu 已提交
121 122 123 124 125
        self.attrs = {'axis': 2}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=2)}

    def test_check_output(self):
126
        self.check_output()
E
emailweixu 已提交
127 128

    def test_check_grad(self):
G
GGBond8488 已提交
129
        self.check_grad(['X'], 'Out', check_prim=True)
E
emailweixu 已提交
130 131 132 133 134


class TestSumOp2(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
135 136
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
137
        self.enable_cinn = True
E
emailweixu 已提交
138 139 140
        self.attrs = {'axis': -1, 'reverse': True}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {
141 142 143
            'Out': np.flip(
                np.flip(self.inputs['X'], axis=2).cumsum(axis=2), axis=2
            )
E
emailweixu 已提交
144 145 146
        }

    def test_check_output(self):
147
        self.check_output()
E
emailweixu 已提交
148 149

    def test_check_grad(self):
G
GGBond8488 已提交
150
        self.check_grad(['X'], 'Out', check_prim=True)
E
emailweixu 已提交
151 152 153 154 155


class TestSumOp3(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
156 157
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
158
        self.enable_cinn = True
E
emailweixu 已提交
159 160 161 162 163
        self.attrs = {'axis': 1}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}

    def test_check_output(self):
164
        self.check_output()
E
emailweixu 已提交
165 166

    def test_check_grad(self):
G
GGBond8488 已提交
167
        self.check_grad(['X'], 'Out', check_prim=True)
E
emailweixu 已提交
168 169 170 171 172


class TestSumOp4(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
173 174
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
175
        self.enable_cinn = True
E
emailweixu 已提交
176 177 178 179 180
        self.attrs = {'axis': 0}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}

    def test_check_output(self):
181
        self.check_output()
E
emailweixu 已提交
182 183

    def test_check_grad(self):
184
        self.check_grad(['X'], 'Out', check_prim=True)
E
emailweixu 已提交
185 186 187 188 189


class TestSumOp5(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
190 191
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
192
        self.enable_cinn = True
Z
zhupengyang 已提交
193
        self.inputs = {'X': np.random.random((5, 20)).astype("float64")}
E
emailweixu 已提交
194 195 196
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}

    def test_check_output(self):
197
        self.check_output()
E
emailweixu 已提交
198 199

    def test_check_grad(self):
200
        self.check_grad(['X'], 'Out', check_prim=True)
E
emailweixu 已提交
201 202


203 204 205
class TestSumOp6(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
206 207
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
208 209 210
        self.attrs = {'axis': -1, 'flatten': True}
        self.inputs = {'X': np.random.random((5, 6, 5)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum()}
211
        self.enable_cinn = False
212 213 214 215 216

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
217
        self.check_grad(['X'], 'Out', check_prim=True)
218 219


E
emailweixu 已提交
220 221 222
class TestSumOp7(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
223 224
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
225
        self.enable_cinn = True
Z
zhupengyang 已提交
226
        self.inputs = {'X': np.random.random((100)).astype("float64")}
E
emailweixu 已提交
227 228 229
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}

    def test_check_output(self):
230
        self.check_output()
E
emailweixu 已提交
231 232

    def test_check_grad(self):
233
        self.check_grad(['X'], 'Out', check_prim=True)
E
emailweixu 已提交
234 235


236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
class TestCumsumFP16(unittest.TestCase):
    def check_main(self, x_np, dtype):
        paddle.disable_static()
        x = paddle.to_tensor(x_np.astype(dtype))
        x.stop_gradient = False
        y = paddle.cumsum(x, dtype=dtype)
        x_g = paddle.grad(y, [x])
        y_np = y.numpy().astype('float32')
        x_g_np = x_g[0].numpy().astype('float32')
        paddle.enable_static()
        return y_np, x_g_np

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return

        np.random.seed(20)
        x_np = np.random.random([10, 12])
        y_np_1, x_g_np_1 = self.check_main(x_np, 'float16')
        y_np_2, x_g_np_2 = self.check_main(x_np, 'float32')

        np.testing.assert_allclose(y_np_1, y_np_2, rtol=1e-03)
        np.testing.assert_allclose(x_g_np_1, x_g_np_2, rtol=1e-03)


261
class TestSumOpExclusive1(OpTest):
E
emailweixu 已提交
262 263
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
264 265
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
266
        self.enable_cinn = True
E
emailweixu 已提交
267
        self.attrs = {'axis': 2, "exclusive": True}
268
        a = np.random.random((4, 5, 20)).astype("float64")
E
emailweixu 已提交
269 270
        self.inputs = {'X': a}
        self.outputs = {
271 272 273 274 275 276 277
            'Out': np.concatenate(
                (
                    np.zeros((4, 5, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
E
emailweixu 已提交
278 279 280
        }

    def test_check_output(self):
281
        self.check_output()
E
emailweixu 已提交
282

283
    def test_check_grad(self):
G
GGBond8488 已提交
284
        self.check_grad(['X'], 'Out', check_prim=True)
285

286 287 288 289

class TestSumOpExclusive2(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
290 291
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
292
        self.enable_cinn = True
293
        self.attrs = {'axis': 2, "exclusive": True}
294
        a = np.random.random((1, 1, 100)).astype("float64")
295 296
        self.inputs = {'X': a}
        self.outputs = {
297 298 299 300 301 302 303
            'Out': np.concatenate(
                (
                    np.zeros((1, 1, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
304 305 306 307 308
        }

    def test_check_output(self):
        self.check_output()

309
    def test_check_grad(self):
G
GGBond8488 已提交
310
        self.check_grad(['X'], 'Out', check_prim=True)
311

312 313 314 315

class TestSumOpExclusive3(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
316 317
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
318
        self.enable_cinn = True
319
        self.attrs = {'axis': 2, "exclusive": True}
320
        a = np.random.random((4, 5, 20)).astype("float64")
321 322
        self.inputs = {'X': a}
        self.outputs = {
323 324 325 326 327 328 329
            'Out': np.concatenate(
                (
                    np.zeros((4, 5, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
330 331 332 333 334
        }

    def test_check_output(self):
        self.check_output()

335
    def test_check_grad(self):
G
GGBond8488 已提交
336
        self.check_grad(['X'], 'Out', check_prim=True)
337

338 339 340 341

class TestSumOpExclusive4(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
342 343
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
344
        self.enable_cinn = True
345
        self.attrs = {'axis': 2, "exclusive": True}
346
        a = np.random.random((1, 1, 100)).astype("float64")
347 348
        self.inputs = {'X': a}
        self.outputs = {
349 350 351 352 353 354 355
            'Out': np.concatenate(
                (
                    np.zeros((1, 1, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
356 357 358 359 360
        }

    def test_check_output(self):
        self.check_output()

361
    def test_check_grad(self):
G
GGBond8488 已提交
362
        self.check_grad(['X'], 'Out', check_prim=True)
363

364 365 366 367

class TestSumOpExclusive5(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
368 369
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
370
        self.enable_cinn = True
371
        self.attrs = {'axis': 2, "exclusive": True}
372
        a = np.random.random((4, 5, 40)).astype("float64")
373 374
        self.inputs = {'X': a}
        self.outputs = {
375 376 377 378 379 380 381
            'Out': np.concatenate(
                (
                    np.zeros((4, 5, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
382 383 384 385 386
        }

    def test_check_output(self):
        self.check_output()

387
    def test_check_grad(self):
G
GGBond8488 已提交
388
        self.check_grad(['X'], 'Out', check_prim=True)
389

390

391 392 393
class TestSumOpExclusiveFP16(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
394 395 396
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
        self.enable_cinn = False
397 398
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((4, 5, 20)).astype("float16")
399 400
        self.inputs = {'X': a}
        self.outputs = {
401 402
            'Out': np.concatenate(
                (
403
                    np.zeros((4, 5, 1), dtype=np.float16),
404 405 406 407
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
408 409 410 411 412
        }

    def test_check_output(self):
        self.check_output()

413
    def test_check_grad(self):
G
GGBond8488 已提交
414
        self.check_grad(['X'], 'Out', check_prim=True)
415

416

417 418 419
class TestSumOpReverseExclusive(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
G
GGBond8488 已提交
420 421
        self.prim_op_type = "prim"
        self.python_api = paddle.cumsum
422
        self.enable_cinn = True
423 424 425 426 427
        self.attrs = {'axis': 2, 'reverse': True, "exclusive": True}
        a = np.random.random((4, 5, 6)).astype("float64")
        self.inputs = {'X': a}
        a = np.flip(a, axis=2)
        self.outputs = {
428 429 430 431 432 433 434
            'Out': np.concatenate(
                (
                    np.flip(a[:, :, :-1].cumsum(axis=2), axis=2),
                    np.zeros((4, 5, 1), dtype=np.float64),
                ),
                axis=2,
            )
435 436 437 438
        }

    def test_check_output(self):
        self.check_output()
E
emailweixu 已提交
439

440
    def test_check_grad(self):
G
GGBond8488 已提交
441
        self.check_grad(['X'], 'Out', check_prim=True)
442

E
emailweixu 已提交
443

444 445
class BadInputTest(unittest.TestCase):
    def test_error(self):
446
        paddle.enable_static()
447 448 449
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
450
                data = [1, 2, 4]
451
                result = paddle.cumsum(data, axis=0)
452

453 454 455
            with self.assertRaises(TypeError):
                test_bad_x()
        paddle.disable_static()
456 457


W
WangZhen 已提交
458 459 460 461 462
class TestTensorAxis(unittest.TestCase):
    def setUp(self):
        paddle.seed(2022)
        self.temp_dir = tempfile.TemporaryDirectory()
        self.save_path = os.path.join(self.temp_dir.name, 'tensor_axis_cumsum')
463 464 465 466 467
        self.place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
W
WangZhen 已提交
468 469 470 471 472 473

    def test_dygraph(self):
        paddle.disable_static()
        x = np.random.randn(5, 6)
        axis = 1
        np_out = np.cumsum(x, axis)
474 475 476
        pd_out = paddle.cumsum(
            paddle.to_tensor(x), axis=paddle.to_tensor([axis], dtype='int32')
        )
W
WangZhen 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        np.testing.assert_allclose(np_out, pd_out.numpy())

    def test_static_and_infer(self):
        paddle.enable_static()
        np_x = np.random.randn(9, 10, 11).astype('float32')
        main_prog = paddle.static.Program()
        starup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, starup_prog):
            # run static
            x = paddle.static.data(shape=np_x.shape, name='x', dtype=np_x.dtype)
            linear = paddle.nn.Linear(np_x.shape[-1], np_x.shape[-1])
            linear_out = linear(x)
            relu_out = paddle.nn.functional.relu(linear_out)
            axis = paddle.full([1], 2, dtype='int64')
            out = paddle.cumsum(relu_out, axis=axis)
492
            loss = paddle.mean(out)
493
            sgd = paddle.optimizer.SGD(learning_rate=0.0)
494
            sgd.minimize(paddle.mean(out))
W
WangZhen 已提交
495 496 497 498 499 500 501

            exe = paddle.static.Executor(self.place)
            exe.run(starup_prog)
            static_out = exe.run(feed={'x': np_x}, fetch_list=[out])

            # run infer
            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
502 503 504
            config = paddle_infer.Config(
                self.save_path + '.pdmodel', self.save_path + '.pdiparams'
            )
W
WangZhen 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            if paddle.is_compiled_with_cuda():
                config.enable_use_gpu(100, 0)
            else:
                config.disable_gpu()

            predictor = paddle_infer.create_predictor(config)
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            fake_input = np_x
            input_handle.reshape(np_x.shape)
            input_handle.copy_from_cpu(fake_input)
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])
            infer_out = output_handle.copy_to_cpu()
            np.testing.assert_allclose(static_out[0], infer_out)


523 524
class TestCumSumOpFp16(unittest.TestCase):
    def test_fp16(self):
525
        paddle.enable_static()
526 527 528 529 530 531 532 533 534 535 536 537
        x_np = np.random.random((100, 100)).astype('float16')
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data(shape=[100, 100], name='x', dtype='float16')
            y1 = paddle.cumsum(x)
            y2 = paddle.cumsum(x, axis=0)
            y3 = paddle.cumsum(x, axis=-1)
            y4 = paddle.cumsum(x, axis=-2)
            if core.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                out = exe.run(feed={'x': x_np}, fetch_list=[y1, y2, y3, y4])
538
        paddle.disable_static()
539 540


E
emailweixu 已提交
541 542
if __name__ == '__main__':
    unittest.main()