test_cumsum_op.py 16.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
E
emailweixu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
WangZhen 已提交
15
import os
E
emailweixu 已提交
16
import unittest
W
WangZhen 已提交
17
import tempfile
E
emailweixu 已提交
18
import numpy as np
19
from op_test import OpTest
20
import paddle
21 22
import paddle.fluid.core as core
import paddle.fluid as fluid
W
WangZhen 已提交
23
import paddle.inference as paddle_infer
24 25 26
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
27 28 29


class TestCumsumOp(unittest.TestCase):
30

31 32
    def run_cases(self):
        data_np = np.arange(12).reshape(3, 4)
Z
Zhou Wei 已提交
33
        data = paddle.to_tensor(data_np)
34 35 36

        y = paddle.cumsum(data)
        z = np.cumsum(data_np)
37
        np.testing.assert_array_equal(z, y.numpy())
38 39 40

        y = paddle.cumsum(data, axis=0)
        z = np.cumsum(data_np, axis=0)
41
        np.testing.assert_array_equal(z, y.numpy())
42 43 44

        y = paddle.cumsum(data, axis=-1)
        z = np.cumsum(data_np, axis=-1)
45
        np.testing.assert_array_equal(z, y.numpy())
46 47 48 49 50 51 52 53 54

        y = paddle.cumsum(data, dtype='float64')
        self.assertTrue(y.dtype == core.VarDesc.VarType.FP64)

        y = paddle.cumsum(data, dtype=np.int32)
        self.assertTrue(y.dtype == core.VarDesc.VarType.INT32)

        y = paddle.cumsum(data, axis=-2)
        z = np.cumsum(data_np, axis=-2)
55
        np.testing.assert_array_equal(z, y.numpy())
56 57 58 59

    def run_static(self, use_gpu=False):
        with fluid.program_guard(fluid.Program()):
            data_np = np.random.random((100, 100)).astype(np.float32)
60
            x = paddle.static.data('X', [100, 100])
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
            y = paddle.cumsum(x)
            y2 = paddle.cumsum(x, axis=0)
            y3 = paddle.cumsum(x, axis=-1)
            y4 = paddle.cumsum(x, dtype='float64')
            y5 = paddle.cumsum(x, dtype=np.int32)
            y6 = paddle.cumsum(x, axis=-2)

            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            out = exe.run(feed={'X': data_np},
                          fetch_list=[
                              y.name, y2.name, y3.name, y4.name, y5.name,
                              y6.name
                          ])

            z = np.cumsum(data_np)
78
            np.testing.assert_allclose(z, out[0], rtol=1e-05)
79
            z = np.cumsum(data_np, axis=0)
80
            np.testing.assert_allclose(z, out[1], rtol=1e-05)
81
            z = np.cumsum(data_np, axis=-1)
82
            np.testing.assert_allclose(z, out[2], rtol=1e-05)
83 84 85
            self.assertTrue(out[3].dtype == np.float64)
            self.assertTrue(out[4].dtype == np.int32)
            z = np.cumsum(data_np, axis=-2)
86
            np.testing.assert_allclose(z, out[5], rtol=1e-05)
87 88

    def test_cpu(self):
89 90 91
        paddle.disable_static(paddle.fluid.CPUPlace())
        self.run_cases()
        paddle.enable_static()
92 93 94 95 96 97

        self.run_static()

    def test_gpu(self):
        if not fluid.core.is_compiled_with_cuda():
            return
98 99 100
        paddle.disable_static(paddle.fluid.CUDAPlace(0))
        self.run_cases()
        paddle.enable_static()
101 102 103 104 105

        self.run_static(use_gpu=True)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
106
            x = paddle.static.data('x', [3, 4])
107 108
            y = paddle.cumsum(x, name='out')
            self.assertTrue('out' in y.name)
E
emailweixu 已提交
109 110 111


class TestSumOp1(OpTest):
112

E
emailweixu 已提交
113 114 115 116 117 118 119
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=2)}

    def test_check_output(self):
120
        self.check_output()
E
emailweixu 已提交
121 122

    def test_check_grad(self):
123
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
124 125 126


class TestSumOp2(OpTest):
127

E
emailweixu 已提交
128 129 130 131 132
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': -1, 'reverse': True}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {
133 134
            'Out': np.flip(np.flip(self.inputs['X'], axis=2).cumsum(axis=2),
                           axis=2)
E
emailweixu 已提交
135 136 137
        }

    def test_check_output(self):
138
        self.check_output()
E
emailweixu 已提交
139 140

    def test_check_grad(self):
141
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
142 143 144


class TestSumOp3(OpTest):
145

E
emailweixu 已提交
146 147 148 149 150 151 152
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 1}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}

    def test_check_output(self):
153
        self.check_output()
E
emailweixu 已提交
154 155

    def test_check_grad(self):
156
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
157 158 159


class TestSumOp4(OpTest):
160

E
emailweixu 已提交
161 162 163 164 165 166 167
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 0}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}

    def test_check_output(self):
168
        self.check_output()
E
emailweixu 已提交
169 170

    def test_check_grad(self):
171
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
172 173 174


class TestSumOp5(OpTest):
175

E
emailweixu 已提交
176 177
    def setUp(self):
        self.op_type = "cumsum"
Z
zhupengyang 已提交
178
        self.inputs = {'X': np.random.random((5, 20)).astype("float64")}
E
emailweixu 已提交
179 180 181
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}

    def test_check_output(self):
182
        self.check_output()
E
emailweixu 已提交
183 184

    def test_check_grad(self):
185
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
186 187 188


class TestSumOp7(OpTest):
189

E
emailweixu 已提交
190 191
    def setUp(self):
        self.op_type = "cumsum"
Z
zhupengyang 已提交
192
        self.inputs = {'X': np.random.random((100)).astype("float64")}
E
emailweixu 已提交
193 194 195
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}

    def test_check_output(self):
196
        self.check_output()
E
emailweixu 已提交
197 198

    def test_check_grad(self):
199
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
200 201


202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
class TestCumsumFP16(unittest.TestCase):

    def check_main(self, x_np, dtype):
        paddle.disable_static()
        x = paddle.to_tensor(x_np.astype(dtype))
        x.stop_gradient = False
        y = paddle.cumsum(x, dtype=dtype)
        x_g = paddle.grad(y, [x])
        y_np = y.numpy().astype('float32')
        x_g_np = x_g[0].numpy().astype('float32')
        paddle.enable_static()
        return y_np, x_g_np

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return

        np.random.seed(20)
        x_np = np.random.random([10, 12])
        y_np_1, x_g_np_1 = self.check_main(x_np, 'float16')
        y_np_2, x_g_np_2 = self.check_main(x_np, 'float32')

        np.testing.assert_allclose(y_np_1, y_np_2, rtol=1e-03)
        np.testing.assert_allclose(x_g_np_1, x_g_np_2, rtol=1e-03)


228
class TestSumOpExclusive1(OpTest):
229

E
emailweixu 已提交
230 231 232
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
233
        a = np.random.random((4, 5, 65)).astype("float64")
E
emailweixu 已提交
234 235
        self.inputs = {'X': a}
        self.outputs = {
236 237 238 239
            'Out':
            np.concatenate((np.zeros(
                (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                           axis=2)
E
emailweixu 已提交
240 241 242
        }

    def test_check_output(self):
243
        self.check_output()
E
emailweixu 已提交
244

245 246

class TestSumOpExclusive2(OpTest):
247

248 249 250 251 252 253
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((1, 1, 888)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
254 255 256 257
            'Out':
            np.concatenate((np.zeros(
                (1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                           axis=2)
258 259 260 261 262 263 264
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpExclusive3(OpTest):
265

266 267 268 269 270 271
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((4, 5, 888)).astype("float32")
        self.inputs = {'X': a}
        self.outputs = {
272 273 274 275
            'Out':
            np.concatenate((np.zeros(
                (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                           axis=2)
276 277 278 279 280 281 282
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpExclusive4(OpTest):
283

284 285 286 287 288 289
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((1, 1, 3049)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
290 291 292 293
            'Out':
            np.concatenate((np.zeros(
                (1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                           axis=2)
294 295 296 297 298 299 300
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpExclusive5(OpTest):
301

302 303 304 305 306 307
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((4, 5, 3096)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
308 309 310 311
            'Out':
            np.concatenate((np.zeros(
                (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                           axis=2)
312 313 314 315 316 317
        }

    def test_check_output(self):
        self.check_output()


318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
class TestSumOpExclusiveFP16(OpTest):

    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True, "dtype": "float16"}
        a = np.random.random((4, 5, 3096)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
            'Out':
            np.concatenate((np.zeros(
                (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
                           axis=2)
        }

    def test_check_output(self):
        self.check_output()


336
class TestSumOpReverseExclusive(OpTest):
337

338 339 340 341 342 343 344
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, 'reverse': True, "exclusive": True}
        a = np.random.random((4, 5, 6)).astype("float64")
        self.inputs = {'X': a}
        a = np.flip(a, axis=2)
        self.outputs = {
345 346 347 348
            'Out':
            np.concatenate(
                (np.flip(a[:, :, :-1].cumsum(axis=2),
                         axis=2), np.zeros((4, 5, 1), dtype=np.float64)),
349 350 351 352 353
                axis=2)
        }

    def test_check_output(self):
        self.check_output()
E
emailweixu 已提交
354 355


356
class BadInputTest(unittest.TestCase):
357

358 359 360 361
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
362
                data = [1, 2, 4]
363 364 365 366 367
                result = fluid.layers.cumsum(data, axis=0)

            self.assertRaises(TypeError, test_bad_x)


W
WangZhen 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
class TestTensorAxis(unittest.TestCase):

    def setUp(self):
        paddle.seed(2022)
        self.temp_dir = tempfile.TemporaryDirectory()
        self.save_path = os.path.join(self.temp_dir.name, 'tensor_axis_cumsum')
        self.place = paddle.CUDAPlace(
            0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace()

    def test_dygraph(self):
        paddle.disable_static()
        x = np.random.randn(5, 6)
        axis = 1
        np_out = np.cumsum(x, axis)
        pd_out = paddle.cumsum(paddle.to_tensor(x),
                               axis=paddle.to_tensor([axis], dtype='int32'))
        np.testing.assert_allclose(np_out, pd_out.numpy())

    def test_static_and_infer(self):
        paddle.enable_static()
        np_x = np.random.randn(9, 10, 11).astype('float32')
        main_prog = paddle.static.Program()
        starup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, starup_prog):
            # run static
            x = paddle.static.data(shape=np_x.shape, name='x', dtype=np_x.dtype)
            print(x)
            linear = paddle.nn.Linear(np_x.shape[-1], np_x.shape[-1])
            linear_out = linear(x)
            relu_out = paddle.nn.functional.relu(linear_out)
            axis = paddle.full([1], 2, dtype='int64')
            out = paddle.cumsum(relu_out, axis=axis)
400 401 402
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(learning_rate=0.)
            sgd.minimize(paddle.mean(out))
W
WangZhen 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

            exe = paddle.static.Executor(self.place)
            exe.run(starup_prog)
            static_out = exe.run(feed={'x': np_x}, fetch_list=[out])

            # run infer
            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
            config = paddle_infer.Config(self.save_path + '.pdmodel',
                                         self.save_path + '.pdiparams')
            if paddle.is_compiled_with_cuda():
                config.enable_use_gpu(100, 0)
            else:
                config.disable_gpu()

            predictor = paddle_infer.create_predictor(config)
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            fake_input = np_x
            input_handle.reshape(np_x.shape)
            input_handle.copy_from_cpu(fake_input)
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])
            infer_out = output_handle.copy_to_cpu()
            np.testing.assert_allclose(static_out[0], infer_out)


430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
class TestCumsumDoubleGradCheck(unittest.TestCase):

    def cumsum_wrapper(self, x):
        return paddle.cumsum(x[0], 0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float64

        data = layers.data('data', [3, 4], False, dtype)
        data.persistable = True
        out = paddle.cumsum(data, 0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.cumsum_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestCumsumTripleGradCheck(unittest.TestCase):

    def cumsum_wrapper(self, x):
        return paddle.cumsum(x[0], 0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.cumsum(data, 0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.cumsum_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


E
emailweixu 已提交
504 505
if __name__ == '__main__':
    unittest.main()