test_cumsum_op.py 15.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
E
emailweixu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
WangZhen 已提交
15
import os
E
emailweixu 已提交
16
import unittest
W
WangZhen 已提交
17
import tempfile
E
emailweixu 已提交
18
import numpy as np
19
from op_test import OpTest
20
import paddle
21 22
import paddle.fluid.core as core
import paddle.fluid as fluid
W
WangZhen 已提交
23
import paddle.inference as paddle_infer
24 25 26
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
27 28 29 30 31


class TestCumsumOp(unittest.TestCase):
    def run_cases(self):
        data_np = np.arange(12).reshape(3, 4)
Z
Zhou Wei 已提交
32
        data = paddle.to_tensor(data_np)
33 34 35

        y = paddle.cumsum(data)
        z = np.cumsum(data_np)
36
        np.testing.assert_array_equal(z, y.numpy())
37 38 39

        y = paddle.cumsum(data, axis=0)
        z = np.cumsum(data_np, axis=0)
40
        np.testing.assert_array_equal(z, y.numpy())
41 42 43

        y = paddle.cumsum(data, axis=-1)
        z = np.cumsum(data_np, axis=-1)
44
        np.testing.assert_array_equal(z, y.numpy())
45 46 47 48 49 50 51 52 53

        y = paddle.cumsum(data, dtype='float64')
        self.assertTrue(y.dtype == core.VarDesc.VarType.FP64)

        y = paddle.cumsum(data, dtype=np.int32)
        self.assertTrue(y.dtype == core.VarDesc.VarType.INT32)

        y = paddle.cumsum(data, axis=-2)
        z = np.cumsum(data_np, axis=-2)
54
        np.testing.assert_array_equal(z, y.numpy())
55 56 57 58

    def run_static(self, use_gpu=False):
        with fluid.program_guard(fluid.Program()):
            data_np = np.random.random((100, 100)).astype(np.float32)
59
            x = paddle.static.data('X', [100, 100])
60 61 62 63 64 65 66 67 68 69
            y = paddle.cumsum(x)
            y2 = paddle.cumsum(x, axis=0)
            y3 = paddle.cumsum(x, axis=-1)
            y4 = paddle.cumsum(x, dtype='float64')
            y5 = paddle.cumsum(x, dtype=np.int32)
            y6 = paddle.cumsum(x, axis=-2)

            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
70 71 72 73 74 75 76 77 78 79 80
            out = exe.run(
                feed={'X': data_np},
                fetch_list=[
                    y.name,
                    y2.name,
                    y3.name,
                    y4.name,
                    y5.name,
                    y6.name,
                ],
            )
81 82

            z = np.cumsum(data_np)
83
            np.testing.assert_allclose(z, out[0], rtol=1e-05)
84
            z = np.cumsum(data_np, axis=0)
85
            np.testing.assert_allclose(z, out[1], rtol=1e-05)
86
            z = np.cumsum(data_np, axis=-1)
87
            np.testing.assert_allclose(z, out[2], rtol=1e-05)
88 89 90
            self.assertTrue(out[3].dtype == np.float64)
            self.assertTrue(out[4].dtype == np.int32)
            z = np.cumsum(data_np, axis=-2)
91
            np.testing.assert_allclose(z, out[5], rtol=1e-05)
92 93

    def test_cpu(self):
94 95 96
        paddle.disable_static(paddle.fluid.CPUPlace())
        self.run_cases()
        paddle.enable_static()
97 98 99 100 101 102

        self.run_static()

    def test_gpu(self):
        if not fluid.core.is_compiled_with_cuda():
            return
103 104 105
        paddle.disable_static(paddle.fluid.CUDAPlace(0))
        self.run_cases()
        paddle.enable_static()
106 107 108 109 110

        self.run_static(use_gpu=True)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
111
            x = paddle.static.data('x', [3, 4])
112 113
            y = paddle.cumsum(x, name='out')
            self.assertTrue('out' in y.name)
E
emailweixu 已提交
114 115 116 117 118 119 120 121 122 123


class TestSumOp1(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=2)}

    def test_check_output(self):
124
        self.check_output()
E
emailweixu 已提交
125 126

    def test_check_grad(self):
127
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
128 129 130 131 132 133 134 135


class TestSumOp2(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': -1, 'reverse': True}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {
136 137 138
            'Out': np.flip(
                np.flip(self.inputs['X'], axis=2).cumsum(axis=2), axis=2
            )
E
emailweixu 已提交
139 140 141
        }

    def test_check_output(self):
142
        self.check_output()
E
emailweixu 已提交
143 144

    def test_check_grad(self):
145
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
146 147 148 149 150 151 152 153 154 155


class TestSumOp3(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 1}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}

    def test_check_output(self):
156
        self.check_output()
E
emailweixu 已提交
157 158

    def test_check_grad(self):
159
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
160 161 162 163 164 165 166 167 168 169


class TestSumOp4(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 0}
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}

    def test_check_output(self):
170
        self.check_output()
E
emailweixu 已提交
171 172

    def test_check_grad(self):
173
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
174 175 176 177 178


class TestSumOp5(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
Z
zhupengyang 已提交
179
        self.inputs = {'X': np.random.random((5, 20)).astype("float64")}
E
emailweixu 已提交
180 181 182
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=1)}

    def test_check_output(self):
183
        self.check_output()
E
emailweixu 已提交
184 185

    def test_check_grad(self):
186
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
187 188 189 190 191


class TestSumOp7(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
Z
zhupengyang 已提交
192
        self.inputs = {'X': np.random.random((100)).astype("float64")}
E
emailweixu 已提交
193 194 195
        self.outputs = {'Out': self.inputs['X'].cumsum(axis=0)}

    def test_check_output(self):
196
        self.check_output()
E
emailweixu 已提交
197 198

    def test_check_grad(self):
199
        self.check_grad(['X'], 'Out')
E
emailweixu 已提交
200 201


202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
class TestCumsumFP16(unittest.TestCase):
    def check_main(self, x_np, dtype):
        paddle.disable_static()
        x = paddle.to_tensor(x_np.astype(dtype))
        x.stop_gradient = False
        y = paddle.cumsum(x, dtype=dtype)
        x_g = paddle.grad(y, [x])
        y_np = y.numpy().astype('float32')
        x_g_np = x_g[0].numpy().astype('float32')
        paddle.enable_static()
        return y_np, x_g_np

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return

        np.random.seed(20)
        x_np = np.random.random([10, 12])
        y_np_1, x_g_np_1 = self.check_main(x_np, 'float16')
        y_np_2, x_g_np_2 = self.check_main(x_np, 'float32')

        np.testing.assert_allclose(y_np_1, y_np_2, rtol=1e-03)
        np.testing.assert_allclose(x_g_np_1, x_g_np_2, rtol=1e-03)


227
class TestSumOpExclusive1(OpTest):
E
emailweixu 已提交
228 229 230
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
231
        a = np.random.random((4, 5, 65)).astype("float64")
E
emailweixu 已提交
232 233
        self.inputs = {'X': a}
        self.outputs = {
234 235 236 237 238 239 240
            'Out': np.concatenate(
                (
                    np.zeros((4, 5, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
E
emailweixu 已提交
241 242 243
        }

    def test_check_output(self):
244
        self.check_output()
E
emailweixu 已提交
245

246 247 248 249 250 251 252 253

class TestSumOpExclusive2(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((1, 1, 888)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
254 255 256 257 258 259 260
            'Out': np.concatenate(
                (
                    np.zeros((1, 1, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
261 262 263 264 265 266 267 268 269 270 271 272 273
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpExclusive3(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((4, 5, 888)).astype("float32")
        self.inputs = {'X': a}
        self.outputs = {
274 275 276 277 278 279 280
            'Out': np.concatenate(
                (
                    np.zeros((4, 5, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
281 282 283 284 285 286 287 288 289 290 291 292 293
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpExclusive4(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((1, 1, 3049)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
294 295 296 297 298 299 300
            'Out': np.concatenate(
                (
                    np.zeros((1, 1, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
301 302 303 304 305 306 307 308 309 310 311 312 313
        }

    def test_check_output(self):
        self.check_output()


class TestSumOpExclusive5(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True}
        a = np.random.random((4, 5, 3096)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
314 315 316 317 318 319 320
            'Out': np.concatenate(
                (
                    np.zeros((4, 5, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
321 322 323 324 325 326
        }

    def test_check_output(self):
        self.check_output()


327 328 329 330 331 332 333
class TestSumOpExclusiveFP16(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, "exclusive": True, "dtype": "float16"}
        a = np.random.random((4, 5, 3096)).astype("float64")
        self.inputs = {'X': a}
        self.outputs = {
334 335 336 337 338 339 340
            'Out': np.concatenate(
                (
                    np.zeros((4, 5, 1), dtype=np.float64),
                    a[:, :, :-1].cumsum(axis=2),
                ),
                axis=2,
            )
341 342 343 344 345 346
        }

    def test_check_output(self):
        self.check_output()


347 348 349 350 351 352 353 354
class TestSumOpReverseExclusive(OpTest):
    def setUp(self):
        self.op_type = "cumsum"
        self.attrs = {'axis': 2, 'reverse': True, "exclusive": True}
        a = np.random.random((4, 5, 6)).astype("float64")
        self.inputs = {'X': a}
        a = np.flip(a, axis=2)
        self.outputs = {
355 356 357 358 359 360 361
            'Out': np.concatenate(
                (
                    np.flip(a[:, :, :-1].cumsum(axis=2), axis=2),
                    np.zeros((4, 5, 1), dtype=np.float64),
                ),
                axis=2,
            )
362 363 364 365
        }

    def test_check_output(self):
        self.check_output()
E
emailweixu 已提交
366 367


368 369 370 371 372
class BadInputTest(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
373
                data = [1, 2, 4]
374
                result = paddle.cumsum(data, axis=0)
375 376 377 378

            self.assertRaises(TypeError, test_bad_x)


W
WangZhen 已提交
379 380 381 382 383
class TestTensorAxis(unittest.TestCase):
    def setUp(self):
        paddle.seed(2022)
        self.temp_dir = tempfile.TemporaryDirectory()
        self.save_path = os.path.join(self.temp_dir.name, 'tensor_axis_cumsum')
384 385 386 387 388
        self.place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
W
WangZhen 已提交
389 390 391 392 393 394

    def test_dygraph(self):
        paddle.disable_static()
        x = np.random.randn(5, 6)
        axis = 1
        np_out = np.cumsum(x, axis)
395 396 397
        pd_out = paddle.cumsum(
            paddle.to_tensor(x), axis=paddle.to_tensor([axis], dtype='int32')
        )
W
WangZhen 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        np.testing.assert_allclose(np_out, pd_out.numpy())

    def test_static_and_infer(self):
        paddle.enable_static()
        np_x = np.random.randn(9, 10, 11).astype('float32')
        main_prog = paddle.static.Program()
        starup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, starup_prog):
            # run static
            x = paddle.static.data(shape=np_x.shape, name='x', dtype=np_x.dtype)
            print(x)
            linear = paddle.nn.Linear(np_x.shape[-1], np_x.shape[-1])
            linear_out = linear(x)
            relu_out = paddle.nn.functional.relu(linear_out)
            axis = paddle.full([1], 2, dtype='int64')
            out = paddle.cumsum(relu_out, axis=axis)
414
            loss = paddle.mean(out)
415
            sgd = paddle.optimizer.SGD(learning_rate=0.0)
416
            sgd.minimize(paddle.mean(out))
W
WangZhen 已提交
417 418 419 420 421 422 423

            exe = paddle.static.Executor(self.place)
            exe.run(starup_prog)
            static_out = exe.run(feed={'x': np_x}, fetch_list=[out])

            # run infer
            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
424 425 426
            config = paddle_infer.Config(
                self.save_path + '.pdmodel', self.save_path + '.pdiparams'
            )
W
WangZhen 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            if paddle.is_compiled_with_cuda():
                config.enable_use_gpu(100, 0)
            else:
                config.disable_gpu()

            predictor = paddle_infer.create_predictor(config)
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            fake_input = np_x
            input_handle.reshape(np_x.shape)
            input_handle.copy_from_cpu(fake_input)
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])
            infer_out = output_handle.copy_to_cpu()
            np.testing.assert_allclose(static_out[0], infer_out)


445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
class TestCumsumDoubleGradCheck(unittest.TestCase):
    def cumsum_wrapper(self, x):
        return paddle.cumsum(x[0], 0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float64

        data = layers.data('data', [3, 4], False, dtype)
        data.persistable = True
        out = paddle.cumsum(data, 0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

460 461 462
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
463
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
464 465 466
        gradient_checker.double_grad_check_for_dygraph(
            self.cumsum_wrapper, [data], out, x_init=[data_arr], place=place
        )
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestCumsumTripleGradCheck(unittest.TestCase):
    def cumsum_wrapper(self, x):
        return paddle.cumsum(x[0], 0)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3], False, dtype)
        data.persistable = True
        out = paddle.cumsum(data, 0)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

492 493 494
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
495
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
496 497 498
        gradient_checker.triple_grad_check_for_dygraph(
            self.cumsum_wrapper, [data], out, x_init=[data_arr], place=place
        )
499 500 501 502 503 504 505 506 507 508

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


E
emailweixu 已提交
509 510
if __name__ == '__main__':
    unittest.main()