initializer.py 43.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
from . import framework
19
from . import core
20
from .framework import in_dygraph_mode, default_main_program
21
import numpy as np
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
25
from paddle import _C_ops
26

27
__all__ = [
28
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
29 30
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
31
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
32
]
33

34 35 36
_global_weight_initializer_ = None
_global_bias_initializer_ = None

37 38 39 40 41 42 43 44 45 46

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
47
    def __init__(self):
48 49
        pass

50
    def __call__(self, param, block=None):
51 52 53 54
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

55 56
    def _check_block(self, block):
        if block is None:
57
            block = default_main_program().global_block()
58 59 60

        return block

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

96 97 98

class ConstantInitializer(Initializer):
    """Implements the constant initializer
99 100

    Args:
D
Double_V 已提交
101
        value (float32): constant value to initialize the variable 
102 103 104 105

    Examples:
        .. code-block:: python

106 107 108
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
109
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
110 111 112 113
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
114

115 116
    """

117
    def __init__(self, value=0.0, force_cpu=False):
118 119 120
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
121
        self._force_cpu = force_cpu
122

123 124
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
125 126

        Args:
127 128 129
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
130 131

        Returns:
132
            The initialization op
133
        """
134 135
        block = self._check_block(block)

136 137
        assert (isinstance(var, framework.Variable) or
                isinstance(var, framework.EagerParamBase))
138
        assert isinstance(block, framework.Block)
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

154 155 156 157 158 159 160 161 162
        if framework.in_dygraph_mode():
            out_var = _C_ops.fill_constant(
                out_var, 'value',
                float(self._value), 'force_cpu', self._force_cpu, 'dtype',
                int(out_dtype), 'str_value',
                str(float(self._value)), 'shape', var.shape)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
163
                var.copy_(var_tmp, False)
164
            else:
165
                var.copy_(out_var, False)
166 167 168 169 170 171 172 173 174 175 176 177 178 179
            return None
        else:
            # fill constant should set the "str_value" to preserve precision
            op = block.append_op(
                type="fill_constant",
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": int(out_dtype),
                    "value": float(self._value),
                    'str_value': str(float(self._value)),
                    'force_cpu': self._force_cpu
                },
                stop_gradient=True)
180

181 182 183 184 185 186 187
            if var.dtype == VarDesc.VarType.FP16:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
188
            var.op = op
189
            return op
190 191 192


class UniformInitializer(Initializer):
193
    """Implements the random uniform distribution initializer
194 195 196 197 198

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
199 200 201 202 203 204
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
205 206 207 208

    Examples:
        .. code-block:: python

X
xiaoting 已提交
209
            import paddle.fluid as fluid
210
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
211
            fc = fluid.layers.fc(input=x, size=10,
212
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
213 214
    """

215 216 217 218 219 220 221
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
222 223
        assert low is not None
        assert high is not None
224
        assert high >= low
225
        assert seed is not None
226 227 228 229 230
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
231 232 233 234
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
235 236 237
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
238

239 240
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
241 242

        Args:
243 244 245
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
246 247

        Returns:
248
            The initialization op
249
        """
250 251
        block = self._check_block(block)

252
        assert isinstance(block, framework.Block)
253 254
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
255 256
                                 "uniform_random")

D
dzhwinter 已提交
257 258
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
259

X
polish  
Xin Pan 已提交
260
        # to be compatible of fp16 initializers
261
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
262 263
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
264 265
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
266 267 268 269 270 271 272 273
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

274 275 276 277 278 279 280 281
        if framework.in_dygraph_mode():
            out_var = _C_ops.uniform_random(
                'shape', var.shape, 'min', self._low, 'max', self._high, 'seed',
                self._seed, 'dtype', out_dtype, 'diag_num', self._diag_num,
                'diag_step', self._diag_step, 'diag_val', self._diag_val)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
282
                var.copy_(var_tmp, False)
283
            else:
284
                var.copy_(out_var, False)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
            return None
        else:
            op = block.append_op(
                type="uniform_random",
                inputs={},
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "min": self._low,
                    "max": self._high,
                    "seed": self._seed,
                    "diag_num": self._diag_num,
                    "diag_step": self._diag_step,
                    "diag_val": self._diag_val
                },
                stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
W
Wu Yi 已提交
310

311
            var.op = op
312
            return op
313 314 315


class NormalInitializer(Initializer):
316 317 318 319 320 321 322 323 324 325
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
326
            import paddle.fluid as fluid
327
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
328 329
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
330

331 332 333 334 335 336 337 338 339 340 341
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

342 343
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
344 345

        Args:
346 347 348
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
349 350

        Returns:
351
            The initialization op
352
        """
353 354
        block = self._check_block(block)

355
        assert isinstance(block, framework.Block)
356

357 358
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
359
                                 "guassian_random")
360

D
dzhwinter 已提交
361 362
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
363 364

        # to be compatible of fp16 initalizers
365
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
366 367
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
368 369
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
370 371 372 373 374 375 376 377
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

378 379 380 381 382 383 384
        if framework.in_dygraph_mode():
            out_var = _C_ops.gaussian_random(
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed, 'use_mkldnn', False)
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
385
                var.copy_(var_tmp, False)
386
            else:
387
                var.copy_(out_var, False)
388 389 390 391 392 393 394 395 396 397 398 399 400 401
            return None
        else:
            op = block.append_op(
                type="gaussian_random",
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed,
                    "use_mkldnn": False
                },
                stop_gradient=True)
W
Wu Yi 已提交
402

403 404 405 406 407 408 409
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
410
            var.op = op
411
            return op
412 413


414 415 416 417 418 419 420 421 422 423 424
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
425
            import paddle.fluid as fluid
426
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
427 428 429 430 431 432 433 434
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
435
        super(TruncatedNormalInitializer, self).__init__()
436 437 438 439
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

440 441
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
442 443

        Args:
444 445 446
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
447 448

        Returns:
449
            The initialization op
450
        """
451 452
        block = self._check_block(block)

453 454
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
455

456 457
        if self._seed == 0:
            self._seed = block.program.random_seed
458 459

        # to be compatible of fp16 initalizers
460
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
461 462 463
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
464
                    ['truncated_gaussian_random', var.name, 'tmp'])),
465 466 467 468 469 470 471 472
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

473 474 475 476 477 478 479
        if framework.in_dygraph_mode():
            out_var = _C_ops.truncated_gaussian_random(
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed)
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
480
                var.copy_(var_tmp, False)
481
            else:
482
                var.copy_(out_var, False)
483 484 485 486 487 488 489 490 491 492 493 494 495
            return None
        else:
            op = block.append_op(
                type="truncated_gaussian_random",
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed
                },
                stop_gradient=True)
496

497 498 499 500 501 502 503
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
504
            var.op = op
505
            return op
506 507


508
class XavierInitializer(Initializer):
509
    r"""
510
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
511 512 513
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
514 515 516

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
517 518 519 520 521 522
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

523
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
524
    is
525

Q
qiaolongfei 已提交
526
    .. math::
527

Q
qiaolongfei 已提交
528
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
529 530


Q
qiaolongfei 已提交
531
    Args:
X
xiaoting 已提交
532 533
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
534
                inferred from the variable.
X
xiaoting 已提交
535
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
536 537 538 539 540 541 542 543 544
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
545
            import paddle.fluid as fluid
X
xiaoting 已提交
546
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
547 548 549 550 551 552 553
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
554 555 556 557 558 559 560 561
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

562 563
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
564 565

        Args:
566 567 568
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
569 570

        Returns:
571
            The initialization op
572
        """
573 574
        block = self._check_block(block)

575
        assert isinstance(block, framework.Block)
576 577
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
578 579
                                 "xavier_init")

580 581 582 583 584 585
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
586 587 588
        if self._seed == 0:
            self._seed = block.program.random_seed

589
        # to be compatible of fp16 initalizers
590 591
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
592 593 594 595 596 597 598 599 600 601 602 603
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

604 605 606
        if framework.in_dygraph_mode():
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in + fan_out))
607
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
608 609 610 611 612 613 614 615 616 617 618 619
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype', out_dtype)
            else:
                std = np.sqrt(2.0 / float(fan_in + fan_out))
                out_var = _C_ops.gaussian_random(
                    'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0,
                    'std', std, 'seed', self._seed)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
620
                var.copy_(var_tmp, False)
621
            else:
622
                var.copy_(out_var, False)
623
            return None
624
        else:
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in + fan_out))
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)
            else:
                std = np.sqrt(2.0 / float(fan_in + fan_out))
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
661

662
            var.op = op
663
            return op
664 665 666


class MSRAInitializer(Initializer):
667
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
668 669

    This class implements the weight initialization from the paper
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
689 690 691
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
692 693 694 695 696 697

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
698

699
            import paddle
X
xsrobin 已提交
700
            import paddle.fluid as fluid
701
            paddle.enable_static()
D
Double_V 已提交
702
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
703 704
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
705

706 707 708 709 710 711 712 713 714 715 716 717
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

718 719
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
720 721

        Args:
722 723 724
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
725 726

        Returns:
727
            The initialization op
728
        """
729 730
        block = self._check_block(block)

731 732 733 734 735 736 737
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
738 739 740
        if self._seed == 0:
            self._seed = block.program.random_seed

741
        # to be compatible of fp16 initalizers
742 743
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
744 745 746 747 748 749 750 751 752 753 754 755
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
        if framework.in_dygraph_mode():
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in))
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype',
                                                int(out_dtype))
            else:
                std = np.sqrt(2.0 / float(fan_in))
                out_var = _C_ops.gaussian_random(
                    'shape', out_var.shape, 'dtype',
                    int(out_dtype), 'mean', 0.0, 'std', std, 'seed', self._seed)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
773
                var.copy_(var_tmp, False)
774
            else:
775
                var.copy_(out_var, False)
776
            return None
777
        else:
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in))
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            else:
                std = np.sqrt(2.0 / float(fan_in))
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
815

816
            var.op = op
817
            return op
818 819


820
class BilinearInitializer(Initializer):
821
    """
822 823 824
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
825 826 827 828 829

    Examples:

        .. code-block:: python

830
            import math
831 832 833 834 835

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
836 837
            factor = 2
            C = 2
D
Double_V 已提交
838 839
            B = 8
            H = W = 32
840 841 842 843
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
844
            conv_up = nn.Conv2DTranspose(3,
845 846 847 848 849 850 851 852 853 854 855
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
856 857 858 859
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
860 861
    interpolation unchanged during training.

862 863 864 865 866 867 868
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

869 870
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
871 872

        Args:
873 874 875
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
876 877

        Returns:
878
            The initialization op
879
        """
880 881
        block = self._check_block(block)

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

906
        # to be compatible of fp16 initalizers
907 908 909
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
910 911 912 913 914 915 916 917 918 919 920 921 922
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
923 924 925
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
926 927
            raise TypeError("Unsupported dtype %s", var.dtype)

928 929
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
930

931 932 933 934 935 936 937 938 939 940
        if framework.in_dygraph_mode():
            out_var = _C_ops.assign_value('shape',
                                          list(shape), 'dtype', out_dtype,
                                          value_name, values)
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
941
                var.copy_(var_tmp, False)
942
            else:
943
                var.copy_(out_var, False)
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': [out_var]},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(shape),
                    value_name: values
                })

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

966
            var.op = op
967
            return op
968 969


970 971
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
972
    This op initialize the variable by numpy array.
973 974 975 976

    Args:
        value (numpy): numpy array to initialize the variable

977 978 979
    Returns:
        A Tensor variable initialized by numpy.

980 981 982
    Examples:
        .. code-block:: python

983
            import paddle.fluid as fluid
984 985
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
986 987 988 989 990 991 992 993 994 995
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

996 997
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
998 999

        Args:
1000 1001 1002
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
1003 1004

        Returns:
1005
            The initialization op
1006
        """
1007 1008
        block = self._check_block(block)

1009 1010
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
1011 1012

        # to be compatible of fp16 initalizers
1013
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
1029
            value_name = "fp32_values"
1030 1031
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
1032
            value_name = "int32_values"
1033
            values = [int(v) for v in np_value.flat]
1034 1035
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
1036
        if self._value.size > 1024 * 1024 * 1024:
1037 1038
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1039

1040 1041 1042 1043 1044 1045 1046
        if framework.in_dygraph_mode():
            out_var = _C_ops.assign_value('shape',
                                          list(self._value.shape), 'dtype',
                                          out_dtype, value_name, values)
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
1047
                var.copy_(var_tmp, False)
1048
            else:
1049
                var.copy_(out_var, False)
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': out_var},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(self._value.shape),
                    value_name: values
                },
                stop_gradient=True)

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

1070
            var.op = op
1071
            return op
1072 1073


1074 1075 1076 1077 1078 1079 1080
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
1081
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1101 1102 1103 1104 1105
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1106 1107 1108

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1109 1110
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1111 1112 1113 1114

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1115 1116 1117 1118
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1119 1120

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1121
            nn.initializer.set_global_initializer(None)
1122
    """
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1149 1150
def calculate_gain(nonlinearity, param=None):
    """
1151 1152
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some 
    ``paddle.nn.initializer`` api to adjust the initialization value.
1153 1154

    Args:
1155 1156
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as: 
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1157
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
1158
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1159 1160

    Returns:
1161
        A float value, which is the recommended gain for this nonlinearity function.
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

    Examples:
        .. code-block:: python

            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1182 1183 1184
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
        raise ValueError("nonlinearity function {} is not suppported now.".
                         format(nonlinearity))


1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1209
TruncatedNormal = TruncatedNormalInitializer
1210 1211
Xavier = XavierInitializer
MSRA = MSRAInitializer
1212
Bilinear = BilinearInitializer