matmul_v2_op.h 8.0 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <functional>
19
#include <utility>
S
ShenLiang 已提交
20 21 22 23 24
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/dot_op.h"
#include "paddle/fluid/operators/math/blas.h"
C
chentianyu03 已提交
25
#include "paddle/fluid/operators/math/complex_functors.h"
S
ShenLiang 已提交
26 27
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"

Z
zyfncg 已提交
28
// only can include the headers in paddle/pten/api dirs
29
#include "paddle/pten/api/lib/utils/tensor_utils.h"
30
#include "paddle/pten/kernels/matmul_grad_kernel.h"
31
#include "paddle/pten/kernels/matmul_kernel.h"
Z
zyfncg 已提交
32

33
#if defined(__NVCC__) || defined(__HIPCC__)
34
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
S
ShenLiang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#endif

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename DeviceContext, typename T>
class MatMulV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
Z
zyfncg 已提交
51 52 53 54 55

    auto& dev_ctx = ctx.device_context<DeviceContext>();
    Out->mutable_data<T>(X->place());

    // call new kernel
56
    pten::MatmulKernel<T>(dev_ctx, *X, *Y, trans_x, trans_y, Out);
S
ShenLiang 已提交
57 58 59
  }
};

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static framework::Tensor FoldInitDims(const framework::Tensor& input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
static framework::DDim RowMatrixFromVector(const framework::DDim& x_dim) {
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
static framework::DDim ColumnMatrixFromVector(const framework::DDim& y_dim) {
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
    framework::Tensor* x, const math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x,
                                           framework::Tensor* y,
                                           framework::Tensor* out, bool trans_x,
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({(std::max)(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

S
ShenLiang 已提交
133 134 135 136
template <typename DeviceContext, typename T>
class MatMulV2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
137 138
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");
139 140 141
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
S
ShenLiang 已提交
142 143 144 145

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

146 147
    if (dx) dx->mutable_data<T>(ctx.GetPlace());
    if (dy) dy->mutable_data<T>(ctx.GetPlace());
C
chentianyu03 已提交
148

149
    auto& dev_ctx = ctx.device_context<DeviceContext>();
W
wawltor 已提交
150

151
    // call new kernel
152 153
    pten::MatmulGradKernel<T>(dev_ctx, *x, *y, *dout, transpose_x, transpose_y,
                              dx, dy);
S
ShenLiang 已提交
154 155 156
  }
};

W
wawltor 已提交
157 158 159 160
template <typename DeviceContext, typename T>
class MatMulV2DoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
161 162 163
    auto* x = context.Input<framework::Tensor>("X");
    auto* y = context.Input<framework::Tensor>("Y");
    auto* dout = context.Input<framework::Tensor>("DOut");
W
wawltor 已提交
164 165 166 167 168 169 170 171 172 173
    auto* ddx = context.Input<framework::Tensor>("DDX");
    auto* ddy = context.Input<framework::Tensor>("DDY");

    auto* dx = context.Output<framework::Tensor>("DX");
    auto* dy = context.Output<framework::Tensor>("DY");
    auto* ddout = context.Output<framework::Tensor>("DDOut");

    bool transpose_x = context.Attr<bool>("trans_x");
    bool transpose_y = context.Attr<bool>("trans_y");

174 175 176
    if (dx) dx->mutable_data<T>(context.GetPlace());
    if (dy) dy->mutable_data<T>(context.GetPlace());
    if (ddout) ddout->mutable_data<T>(context.GetPlace());
W
wawltor 已提交
177

178
    auto& dev_ctx = context.device_context<DeviceContext>();
W
wawltor 已提交
179

180
    // call new kernel
181 182
    pten::MatmulDoubleGradKernel<T>(dev_ctx, *x, *y, *dout, *ddx, *ddy,
                                    transpose_x, transpose_y, dx, dy, ddout);
W
wawltor 已提交
183 184
  }
};
185 186 187 188 189 190

template <typename DeviceContext, typename T>
class MatMulV2TripleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    // get input
191 192 193 194 195
    auto* x = context.Input<framework::Tensor>("X");
    auto* y = context.Input<framework::Tensor>("Y");
    auto* dout = context.Input<framework::Tensor>("DOut");
    auto* ddx = context.Input<framework::Tensor>("DDX");
    auto* ddy = context.Input<framework::Tensor>("DDY");
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

    auto* d_dx = context.Input<framework::Tensor>("D_DX");
    auto* d_dy = context.Input<framework::Tensor>("D_DY");
    auto* d_ddout = context.Input<framework::Tensor>("D_DDOut");

    // get output
    auto* out_d_x = context.Output<framework::Tensor>("D_X_out");
    auto* out_d_y = context.Output<framework::Tensor>("D_Y_out");
    auto* out_d_dout = context.Output<framework::Tensor>("D_DOut_out");

    auto* out_d_ddx = context.Output<framework::Tensor>("D_DDX_out");
    auto* out_d_ddy = context.Output<framework::Tensor>("D_DDY_out");

    bool transpose_x = context.Attr<bool>("trans_x");
    bool transpose_y = context.Attr<bool>("trans_y");

212 213 214 215 216 217 218 219
    if (out_d_x) out_d_x->mutable_data<T>(context.GetPlace());
    if (out_d_y) out_d_y->mutable_data<T>(context.GetPlace());
    if (out_d_dout) out_d_dout->mutable_data<T>(context.GetPlace());
    if (out_d_ddx) out_d_ddx->mutable_data<T>(context.GetPlace());
    if (out_d_ddy) out_d_ddy->mutable_data<T>(context.GetPlace());

    auto& dev_ctx = context.device_context<DeviceContext>();
    // call new kernel
220 221 222
    pten::MatmulTripleGradKernel<T>(
        dev_ctx, *x, *y, *dout, *ddx, *ddy, *d_dx, *d_dy, *d_ddout, transpose_x,
        transpose_y, out_d_x, out_d_y, out_d_dout, out_d_ddx, out_d_ddy);
223 224 225
  }
};

S
ShenLiang 已提交
226 227
}  // namespace operators
}  // namespace paddle