matmul_v2_op.h 18.0 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <functional>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/dot_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"

#ifdef __NVCC__
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#endif

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename T>
struct IdentityFunctor {
  HOSTDEVICE explicit inline IdentityFunctor() {}

  HOSTDEVICE inline T operator()(const T& x) const { return x; }
};

template <typename DeviceContext, typename T>
void ReduceSumForMatmulGrad(const Tensor* input, Tensor* output,
                            const std::vector<int>& reduce_dims,
                            const paddle::framework::ExecutionContext& ctx) {
  if (reduce_dims.empty()) {
    // FIXME maybe reduce this copy operation
    framework::TensorCopySync(*input, ctx.GetPlace(), output);
    return;
  }
#ifdef __NVCC__
  auto stream = ctx.cuda_device_context().stream();
  TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
      *input, output, reduce_dims, static_cast<T>(0), cub::Sum(),
      IdentityFunctor<T>(), stream);
#else
  ReduceKernelFunctor<DeviceContext, T, ops::SumFunctor>(
      input, output, reduce_dims, true, false, ctx)
      .template apply<T>();
#endif
}

static void GetBroadcastFromDims(const int x_ndim, const std::int64_t* x_dims,
                                 const int y_ndim, const std::int64_t* y_dims,
                                 std::int64_t* x_bd_dims,
                                 std::int64_t* y_bd_dims,
                                 std::int64_t* out_bd_dims) {
W
wanghuancoder 已提交
68
  const int ndim = (std::max)(x_ndim, y_ndim);
S
ShenLiang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81
  std::fill(x_bd_dims, x_bd_dims + ndim - x_ndim, 1);
  std::fill(y_bd_dims, y_bd_dims + ndim - y_ndim, 1);
  std::copy(x_dims, x_dims + x_ndim, x_bd_dims + ndim - x_ndim);
  std::copy(y_dims, y_dims + y_ndim, y_bd_dims + ndim - y_ndim);

  for (int i = 0; i < ndim; ++i) {
    PADDLE_ENFORCE_EQ(
        x_bd_dims[i] == y_bd_dims[i] || x_bd_dims[i] <= 1 || y_bd_dims[i] <= 1,
        true, platform::errors::InvalidArgument(
                  "Input(X) and Input(Y) has error dim."));
    if (x_bd_dims[i] == 0 || y_bd_dims[i] == 0) {
      out_bd_dims[i] = 0;
    } else {
W
wanghuancoder 已提交
82
      out_bd_dims[i] = (std::max)(x_bd_dims[i], y_bd_dims[i]);
S
ShenLiang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    }
  }
}

static int64_t GetIndexMessage(const int n, const int64_t* dims,
                               const int64_t* index) {
  int64_t sum = 0;
  for (int i = 0; i < n; ++i) {
    if (dims[i] > 1) {
      sum = sum * dims[i] + index[i];
    }
  }
  return sum;
}

static void IndexIncreaseFromDims(const int ndim, const int64_t* dims,
                                  int64_t* index) {
  for (int i = ndim - 1; i >= 0; --i) {
    ++index[i];
    if (index[i] >= dims[i]) {
      index[i] -= dims[i];
    } else {
      break;
    }
  }
}

template <typename DeviceContext, typename T>
void MatMulFunction(const Tensor* X, const Tensor* Y,
                    const std::vector<std::int64_t>& x_dims,
                    const std::vector<std::int64_t>& y_dims, Tensor* Out,
                    bool trans_x, bool trans_y,
                    const paddle::framework::ExecutionContext& ctx) {
  const int x_ndim = x_dims.size();
  const int y_ndim = y_dims.size();

  // get data ptr
  const T* x_data = X->data<T>();
  const T* y_data = Y->data<T>();

  if (x_ndim == 1 && y_ndim == 1) {
    PADDLE_ENFORCE_EQ(X->numel(), Y->numel(),
                      platform::errors::InvalidArgument(
                          "X's numbers is not equal to Y's numbers,"
                          "when X/Y's dims =1"));
    VLOG(3) << "MatMul's case 1";
    Out->Resize({1});
    Out->mutable_data<T>(ctx.GetPlace());
    auto out_eigen = framework::EigenScalar<T>::From(*Out);
    auto x_eigen = framework::EigenVector<T>::Flatten(*X);
    auto y_eigen = framework::EigenVector<T>::Flatten(*Y);

    auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
    out_eigen.device(dev) = (x_eigen * y_eigen).sum();
    return;
  }

  auto& dev_ctx = ctx.template device_context<DeviceContext>();
  auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);

  if (x_ndim == 1) {
    const int N = X->numel();
    if (trans_y) {
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 1], N,
          platform::errors::InvalidArgument("Input(Y) has error dim."));
    } else {
      PADDLE_ENFORCE_EQ(
          y_dims[y_ndim - 2], N,
          platform::errors::InvalidArgument("Input(Y) has error dim."));
    }
    std::vector<std::int64_t> out_dims(y_ndim - 1);
    if (trans_y) {
      std::copy_n(y_dims.cbegin(), y_ndim - 1, out_dims.begin());
    } else {
      std::copy_n(y_dims.cbegin(), y_ndim - 2, out_dims.begin());
      out_dims.back() = y_dims.back();
    }
    Out->Resize(framework::make_ddim(out_dims));
    Out->mutable_data<T>(ctx.GetPlace());
    if (trans_y) {
      const int M = Y->numel() / N;
      VLOG(3) << "MatMul's case 2";
S
ShenLiang 已提交
166 167
      blas.GEMV(false, M, N, static_cast<T>(1), y_data, x_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
168 169 170 171 172
    } else {
      const int M = y_dims[y_ndim - 1];
      const int batch_size = Y->numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 3";
S
ShenLiang 已提交
173 174
        blas.GEMV(true, N, M, static_cast<T>(1), y_data, x_data,
                  static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
175 176
      } else {
        VLOG(3) << "MatMul's case 4";
S
ShenLiang 已提交
177 178 179
        blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast<T>(1),
                         y_data, x_data, static_cast<T>(0), Out->data<T>(),
                         batch_size, M * N, 0);
S
ShenLiang 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
      }
    }
    return;
  }

  if (y_ndim == 1) {
    const int N = Y->numel();
    if (trans_x) {
      PADDLE_ENFORCE_EQ(
          x_dims[x_ndim - 2], N,
          platform::errors::InvalidArgument("Input(X) has error dim."));
    } else {
      PADDLE_ENFORCE_EQ(
          x_dims[x_ndim - 1], N,
          platform::errors::InvalidArgument("Input(X) has error dim."));
    }
    std::vector<std::int64_t> out_dims(x_ndim - 1);
    if (trans_x) {
      std::copy_n(x_dims.cbegin(), x_ndim - 2, out_dims.begin());
      out_dims.back() = x_dims.back();
    } else {
      std::copy_n(x_dims.cbegin(), x_ndim - 1, out_dims.begin());
    }
    Out->Resize(framework::make_ddim(out_dims));
    Out->mutable_data<T>(ctx.GetPlace());

    if (trans_x) {
      const int M = x_dims[x_ndim - 1];
      const int batch_size = X->numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 5";
S
ShenLiang 已提交
211 212
        blas.GEMV(true, N, M, static_cast<T>(1), x_data, y_data,
                  static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
213 214
      } else {
        VLOG(3) << "MatMul's case 6";
S
ShenLiang 已提交
215 216 217
        blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast<T>(1),
                         x_data, y_data, static_cast<T>(0), Out->data<T>(),
                         batch_size, M * N, 0);
S
ShenLiang 已提交
218 219 220 221
      }
    } else {
      const int M = X->numel() / N;
      VLOG(3) << "MatMul's case 7";
S
ShenLiang 已提交
222 223
      blas.GEMV(false, M, N, static_cast<T>(1), x_data, y_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237
    }
    return;
  }

  const int M = trans_x ? x_dims[x_ndim - 1] : x_dims[x_ndim - 2];
  const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
  if (trans_y) {
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], K, platform::errors::InvalidArgument(
                                                 "Input(X) has error dim."));
  } else {
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], K, platform::errors::InvalidArgument(
                                                 "Input(X) has error dim."));
  }
  const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1];
W
wanghuancoder 已提交
238
  const int ndim = (std::max)(x_ndim, y_ndim);
S
ShenLiang 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  std::vector<std::int64_t> x_broadcast_dims(ndim);
  std::vector<std::int64_t> y_broadcast_dims(ndim);
  std::vector<std::int64_t> out_broadcast_dims(ndim);

  GetBroadcastFromDims(x_ndim - 2, x_dims.data(), y_ndim - 2, y_dims.data(),
                       x_broadcast_dims.data(), y_broadcast_dims.data(),
                       out_broadcast_dims.data());

  out_broadcast_dims[ndim - 2] = M;
  out_broadcast_dims[ndim - 1] = N;

  Out->Resize(framework::make_ddim(out_broadcast_dims));
  Out->mutable_data<T>(ctx.GetPlace());

  const int batch_dim = ndim - 2;
  // broadcast message
  const bool is_broadcast_dims = !std::equal(
      x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim,
      y_broadcast_dims.cbegin());

  const std::int64_t x_batch_size = std::accumulate(
      x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  const std::int64_t y_batch_size = std::accumulate(
      y_broadcast_dims.cbegin(), y_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  const std::int64_t out_batch_size = std::accumulate(
      out_broadcast_dims.cbegin(), out_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  if (out_batch_size == 0) return;
  if (x_batch_size == 1 && y_batch_size == 1) {
    VLOG(3) << "MatMul's case 8";
    blas.GEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
272 273
              trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast<T>(1),
              x_data, y_data, static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
274 275 276
  } else if (x_batch_size == 1) {
    if (M == 1 && trans_y) {
      VLOG(3) << "MatMul's case 9";
S
ShenLiang 已提交
277 278
      blas.GEMV(false, y_batch_size * N, K, static_cast<T>(1), y_data, x_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
279 280 281
    } else {
      VLOG(3) << "MatMul's case 10";
      blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
282 283 284
                       trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                       static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                       Out->data<T>(), out_batch_size, 0, K * N);
S
ShenLiang 已提交
285 286 287 288 289
    }
  } else if (y_batch_size == 1) {
    if (!trans_x) {
      VLOG(3) << "MatMul's case 11";
      blas.GEMM(CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
290 291
                x_batch_size * M, N, K, static_cast<T>(1), x_data, y_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
292 293 294
    } else {
      VLOG(3) << "MatMul's case 12";
      blas.BatchedGEMM(CblasTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K,
S
ShenLiang 已提交
295 296
                       static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                       Out->data<T>(), out_batch_size, M * K, 0);
S
ShenLiang 已提交
297 298 299 300
    }
  } else if (!is_broadcast_dims) {
    VLOG(3) << "MatMul's case 13";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
301 302 303
                     trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                     static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                     Out->data<T>(), out_batch_size, M * K, K * N);
S
ShenLiang 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  } else {
    // in the case, can't use stridedgemm
    std::vector<const T*> x_ptr(out_batch_size);
    std::vector<const T*> y_ptr(out_batch_size);
    std::vector<T*> out_ptr(out_batch_size);
    std::vector<std::int64_t> index(batch_dim, 0);
    for (std::int64_t i = 0; i < out_batch_size; ++i) {
      // using the index to get offset
      const std::int64_t x_index =
          GetIndexMessage(batch_dim, x_broadcast_dims.data(), index.data());
      const std::int64_t y_index =
          GetIndexMessage(batch_dim, y_broadcast_dims.data(), index.data());

      x_ptr[i] = x_data + x_index * M * K;
      y_ptr[i] = y_data + y_index * K * N;
      out_ptr[i] = Out->data<T>() + i * M * N;
      IndexIncreaseFromDims(batch_dim, out_broadcast_dims.data(), index.data());
    }
    VLOG(3) << "MatMul's case 14";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
324 325 326
                     trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                     static_cast<T>(1), x_ptr.data(), y_ptr.data(),
                     static_cast<T>(0), out_ptr.data(), out_batch_size);
S
ShenLiang 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
  }
}

template <typename DeviceContext, typename T>
void MatMulFunction(const Tensor* X, const Tensor* Y, Tensor* Out, bool trans_x,
                    bool trans_y,
                    const paddle::framework::ExecutionContext& ctx) {
  const std::vector<std::int64_t> x_dims = vectorize(X->dims());
  const std::vector<std::int64_t> y_dims = vectorize(Y->dims());
  MatMulFunction<DeviceContext, T>(X, Y, x_dims, y_dims, Out, trans_x, trans_y,
                                   ctx);
}

template <typename DeviceContext, typename T>
class MatMulV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
    MatMulFunction<DeviceContext, T>(X, Y, Out, trans_x, trans_y, ctx);
  }
};

template <typename DeviceContext, typename T>
class MatMulV2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* dOut = ctx.Input<Tensor>(framework::GradVarName("Out"));
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

    // get dims
    std::vector<std::int64_t> x_dims = vectorize(X->dims());
    std::vector<std::int64_t> y_dims = vectorize(Y->dims());
    std::vector<std::int64_t> dout_dims = vectorize(dOut->dims());

    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int ndim = dout_dims.size();

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    // x's or y's dim = 1
    if (x_ndim == 1 && y_ndim == 1) {
      if (dx) dx->mutable_data<T>(ctx.GetPlace());
      if (dy) dy->mutable_data<T>(ctx.GetPlace());
      if (dOut->numel() == 1) {
        DotGradFunction<DeviceContext, T>(X, Y, dOut, dx, dy, ctx);
        return;
      }
    }
    // It is very tricky. For this broadcast, currently using the reduce sum to
    // get gradient.
    if (x_ndim == 1) {
      x_dims.insert(x_dims.begin() + 0, 1);
      x_ndim += 1;
      if (trans_x)
        dout_dims.push_back(1);
      else
        dout_dims.insert(dout_dims.begin() + ndim - 1, 1);
      ndim += 1;
    }

    if (y_ndim == 1) {
      y_dims.push_back(1);
      y_ndim += 1;
      if (trans_y)
        dout_dims.insert(dout_dims.begin() + ndim - 1, 1);
      else
        dout_dims.push_back(1);
      ndim += 1;
    }

    // the normal case
    Tensor dx_help, dy_help;
    if (trans_x) {
      if (trans_y) {
        // X'Y': dA = Y'G', dB = G'X'
        if (dx)
          MatMulFunction<DeviceContext, T>(Y, dOut, y_dims, dout_dims, &dx_help,
                                           true, true, ctx);
        if (dy)
          MatMulFunction<DeviceContext, T>(dOut, X, dout_dims, x_dims, &dy_help,
                                           true, true, ctx);
      } else {
        // X'Y: dX = YG', dY = XG
        if (dx)
          MatMulFunction<DeviceContext, T>(Y, dOut, y_dims, dout_dims, &dx_help,
                                           false, true, ctx);
        if (dy)
          MatMulFunction<DeviceContext, T>(X, dOut, x_dims, dout_dims, &dy_help,
                                           false, false, ctx);
      }
    } else {
      if (trans_y) {
        // XY': dX = GY, dY = G'X
        if (dx)
          MatMulFunction<DeviceContext, T>(dOut, Y, dout_dims, y_dims, &dx_help,
                                           false, false, ctx);
        if (dy)
          MatMulFunction<DeviceContext, T>(dOut, X, dout_dims, x_dims, &dy_help,
                                           true, false, ctx);
      } else {
        // XY: dX = GY', dY = X'G
        if (dx)
          MatMulFunction<DeviceContext, T>(dOut, Y, dout_dims, y_dims, &dx_help,
                                           false, true, ctx);
        if (dy)
          MatMulFunction<DeviceContext, T>(X, dOut, x_dims, dout_dims, &dy_help,
                                           true, false, ctx);
      }
    }
    // get help dims
    const std::vector<std::int64_t> dx_help_dims = vectorize(dx_help.dims());
    const std::vector<std::int64_t> dy_help_dims = vectorize(dy_help.dims());

    std::vector<std::int64_t> dx_broadcast_dims(ndim);
    std::vector<std::int64_t> dy_broadcast_dims(ndim);

    std::fill(dx_broadcast_dims.data(),
              dx_broadcast_dims.data() + ndim - x_ndim, 1);
    std::fill(dy_broadcast_dims.data(),
              dy_broadcast_dims.data() + ndim - y_ndim, 1);
    std::copy(x_dims.data(), x_dims.data() + x_ndim,
              dx_broadcast_dims.data() + ndim - x_ndim);
    std::copy(y_dims.data(), y_dims.data() + y_ndim,
              dy_broadcast_dims.data() + ndim - y_ndim);

    std::vector<int> dx_reduce_dims;
    std::vector<int> dy_reduce_dims;
    for (int idx = 0; idx <= ndim - 3; idx++) {
      if (dx_help_dims[idx] != 1 && dx_broadcast_dims[idx] == 1) {
        dx_reduce_dims.push_back(idx);
      }
      if (dy_help_dims[idx] != 1 && dy_broadcast_dims[idx] == 1) {
        dy_reduce_dims.push_back(idx);
      }
    }
    // reduce sum to get grad by ReduceSum
    if (dx) {
      dx->Resize(dx_help.dims());
      ReduceSumForMatmulGrad<DeviceContext, T>(&dx_help, dx, dx_reduce_dims,
                                               ctx);
      dx->Resize(X->dims());
    }
    if (dy) {
      dy->Resize(dy_help.dims());
      ReduceSumForMatmulGrad<DeviceContext, T>(&dy_help, dy, dy_reduce_dims,
                                               ctx);
      dy->Resize(Y->dims());
    }
  }
};

}  // namespace operators
}  // namespace paddle