matmul_v2_op.h 28.7 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <functional>
19
#include <utility>
S
ShenLiang 已提交
20 21 22 23 24
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/dot_op.h"
#include "paddle/fluid/operators/math/blas.h"
C
chentianyu03 已提交
25
#include "paddle/fluid/operators/math/complex_functors.h"
S
ShenLiang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"

#ifdef __NVCC__
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#endif

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename T>
struct IdentityFunctor {
  HOSTDEVICE explicit inline IdentityFunctor() {}

  HOSTDEVICE inline T operator()(const T& x) const { return x; }
};

template <typename DeviceContext, typename T>
void ReduceSumForMatmulGrad(const Tensor* input, Tensor* output,
                            const std::vector<int>& reduce_dims,
                            const paddle::framework::ExecutionContext& ctx) {
#ifdef __NVCC__
  auto stream = ctx.cuda_device_context().stream();
  TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
      *input, output, reduce_dims, static_cast<T>(0), cub::Sum(),
      IdentityFunctor<T>(), stream);
#else
  ReduceKernelFunctor<DeviceContext, T, ops::SumFunctor>(
      input, output, reduce_dims, true, false, ctx)
      .template apply<T>();
#endif
}

static void GetBroadcastFromDims(const int x_ndim, const std::int64_t* x_dims,
                                 const int y_ndim, const std::int64_t* y_dims,
                                 std::int64_t* x_bd_dims,
                                 std::int64_t* y_bd_dims,
                                 std::int64_t* out_bd_dims) {
W
wanghuancoder 已提交
65
  const int ndim = (std::max)(x_ndim, y_ndim);
S
ShenLiang 已提交
66 67 68 69 70 71 72 73
  std::fill(x_bd_dims, x_bd_dims + ndim - x_ndim, 1);
  std::fill(y_bd_dims, y_bd_dims + ndim - y_ndim, 1);
  std::copy(x_dims, x_dims + x_ndim, x_bd_dims + ndim - x_ndim);
  std::copy(y_dims, y_dims + y_ndim, y_bd_dims + ndim - y_ndim);

  for (int i = 0; i < ndim; ++i) {
    PADDLE_ENFORCE_EQ(
        x_bd_dims[i] == y_bd_dims[i] || x_bd_dims[i] <= 1 || y_bd_dims[i] <= 1,
74 75 76 77 78 79 80 81
        true,
        platform::errors::InvalidArgument(
            "Input(X) and Input(Y) has error dim."
            "X_broadcast's shape[%s] must be equal to Y_broadcast's shape[%s],"
            "or X_broadcast's shape[%s] <= 1, or Y_broadcast's shape[%s] <= 1,"
            "But received X_broadcast's shape[%s] = [%s]"
            "received Y_broadcast's shape[%s] = [%s]",
            i, i, i, i, i, x_bd_dims[i], i, y_bd_dims[i]));
S
ShenLiang 已提交
82 83 84
    if (x_bd_dims[i] == 0 || y_bd_dims[i] == 0) {
      out_bd_dims[i] = 0;
    } else {
W
wanghuancoder 已提交
85
      out_bd_dims[i] = (std::max)(x_bd_dims[i], y_bd_dims[i]);
S
ShenLiang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    }
  }
}

static int64_t GetIndexMessage(const int n, const int64_t* dims,
                               const int64_t* index) {
  int64_t sum = 0;
  for (int i = 0; i < n; ++i) {
    if (dims[i] > 1) {
      sum = sum * dims[i] + index[i];
    }
  }
  return sum;
}

static void IndexIncreaseFromDims(const int ndim, const int64_t* dims,
                                  int64_t* index) {
  for (int i = ndim - 1; i >= 0; --i) {
    ++index[i];
    if (index[i] >= dims[i]) {
      index[i] -= dims[i];
    } else {
      break;
    }
  }
}

template <typename DeviceContext, typename T>
void MatMulFunction(const Tensor* X, const Tensor* Y,
                    const std::vector<std::int64_t>& x_dims,
                    const std::vector<std::int64_t>& y_dims, Tensor* Out,
                    bool trans_x, bool trans_y,
                    const paddle::framework::ExecutionContext& ctx) {
  const int x_ndim = x_dims.size();
  const int y_ndim = y_dims.size();

  // get data ptr
  const T* x_data = X->data<T>();
  const T* y_data = Y->data<T>();

  if (x_ndim == 1 && y_ndim == 1) {
127 128 129 130 131 132 133
    PADDLE_ENFORCE_EQ(
        X->numel(), Y->numel(),
        platform::errors::InvalidArgument(
            "X's numbers must be equal to Y's numbers,"
            "when X/Y's dims =1. But received X has [%d] elements,"
            "received Y has [%d] elements",
            X->numel(), Y->numel()));
S
ShenLiang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    VLOG(3) << "MatMul's case 1";
    Out->Resize({1});
    Out->mutable_data<T>(ctx.GetPlace());
    auto out_eigen = framework::EigenScalar<T>::From(*Out);
    auto x_eigen = framework::EigenVector<T>::Flatten(*X);
    auto y_eigen = framework::EigenVector<T>::Flatten(*Y);

    auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
    out_eigen.device(dev) = (x_eigen * y_eigen).sum();
    return;
  }

  auto& dev_ctx = ctx.template device_context<DeviceContext>();
  auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);

  if (x_ndim == 1) {
    const int N = X->numel();
    if (trans_y) {
152 153 154 155 156 157
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], N,
                        platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 1, N, y_ndim - 1, y_dims[y_ndim - 1]));
S
ShenLiang 已提交
158
    } else {
159 160 161 162 163 164
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], N,
                        platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 2, N, y_ndim - 2, y_dims[y_ndim - 2]));
S
ShenLiang 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177
    }
    std::vector<std::int64_t> out_dims(y_ndim - 1);
    if (trans_y) {
      std::copy_n(y_dims.cbegin(), y_ndim - 1, out_dims.begin());
    } else {
      std::copy_n(y_dims.cbegin(), y_ndim - 2, out_dims.begin());
      out_dims.back() = y_dims.back();
    }
    Out->Resize(framework::make_ddim(out_dims));
    Out->mutable_data<T>(ctx.GetPlace());
    if (trans_y) {
      const int M = Y->numel() / N;
      VLOG(3) << "MatMul's case 2";
S
ShenLiang 已提交
178 179
      blas.GEMV(false, M, N, static_cast<T>(1), y_data, x_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
180 181 182 183 184
    } else {
      const int M = y_dims[y_ndim - 1];
      const int batch_size = Y->numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 3";
S
ShenLiang 已提交
185 186
        blas.GEMV(true, N, M, static_cast<T>(1), y_data, x_data,
                  static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
187 188
      } else {
        VLOG(3) << "MatMul's case 4";
S
ShenLiang 已提交
189 190 191
        blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast<T>(1),
                         y_data, x_data, static_cast<T>(0), Out->data<T>(),
                         batch_size, M * N, 0);
S
ShenLiang 已提交
192 193 194 195 196 197 198 199
      }
    }
    return;
  }

  if (y_ndim == 1) {
    const int N = Y->numel();
    if (trans_x) {
200 201 202 203 204 205
      PADDLE_ENFORCE_EQ(x_dims[x_ndim - 2], N,
                        platform::errors::InvalidArgument(
                            "Input(X) has error dim."
                            "X'dims[%d] must be equal to %d"
                            "But received X'dims[%d] is %d",
                            x_ndim - 2, N, x_ndim - 2, x_dims[x_ndim - 2]));
S
ShenLiang 已提交
206
    } else {
207 208 209 210 211 212
      PADDLE_ENFORCE_EQ(x_dims[x_ndim - 1], N,
                        platform::errors::InvalidArgument(
                            "Input(X) has error dim."
                            "X'dims[%d] must be equal to %d"
                            "But received X'dims[%d] is %d",
                            x_ndim - 1, N, x_ndim - 1, x_dims[x_ndim - 1]));
S
ShenLiang 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    }
    std::vector<std::int64_t> out_dims(x_ndim - 1);
    if (trans_x) {
      std::copy_n(x_dims.cbegin(), x_ndim - 2, out_dims.begin());
      out_dims.back() = x_dims.back();
    } else {
      std::copy_n(x_dims.cbegin(), x_ndim - 1, out_dims.begin());
    }
    Out->Resize(framework::make_ddim(out_dims));
    Out->mutable_data<T>(ctx.GetPlace());

    if (trans_x) {
      const int M = x_dims[x_ndim - 1];
      const int batch_size = X->numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 5";
S
ShenLiang 已提交
229 230
        blas.GEMV(true, N, M, static_cast<T>(1), x_data, y_data,
                  static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
231 232
      } else {
        VLOG(3) << "MatMul's case 6";
S
ShenLiang 已提交
233 234 235
        blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast<T>(1),
                         x_data, y_data, static_cast<T>(0), Out->data<T>(),
                         batch_size, M * N, 0);
S
ShenLiang 已提交
236 237 238 239
      }
    } else {
      const int M = X->numel() / N;
      VLOG(3) << "MatMul's case 7";
S
ShenLiang 已提交
240 241
      blas.GEMV(false, M, N, static_cast<T>(1), x_data, y_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
242 243 244 245 246 247 248
    }
    return;
  }

  const int M = trans_x ? x_dims[x_ndim - 1] : x_dims[x_ndim - 2];
  const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
  if (trans_y) {
249 250 251 252 253 254
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], K,
                      platform::errors::InvalidArgument(
                          "Input(Y) has error dim."
                          "Y'dims[%d] must be equal to %d"
                          "But received Y'dims[%d] is %d",
                          y_ndim - 1, K, y_ndim - 1, y_dims[y_ndim - 1]));
S
ShenLiang 已提交
255
  } else {
256 257 258 259 260 261
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], K,
                      platform::errors::InvalidArgument(
                          "Input(Y) has error dim."
                          "Y'dims[%d] must be equal to %d"
                          "But received Y'dims[%d] is %d",
                          y_ndim - 2, K, y_ndim - 2, y_dims[y_ndim - 2]));
S
ShenLiang 已提交
262 263
  }
  const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1];
W
wanghuancoder 已提交
264
  const int ndim = (std::max)(x_ndim, y_ndim);
S
ShenLiang 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
  std::vector<std::int64_t> x_broadcast_dims(ndim);
  std::vector<std::int64_t> y_broadcast_dims(ndim);
  std::vector<std::int64_t> out_broadcast_dims(ndim);

  GetBroadcastFromDims(x_ndim - 2, x_dims.data(), y_ndim - 2, y_dims.data(),
                       x_broadcast_dims.data(), y_broadcast_dims.data(),
                       out_broadcast_dims.data());

  out_broadcast_dims[ndim - 2] = M;
  out_broadcast_dims[ndim - 1] = N;

  Out->Resize(framework::make_ddim(out_broadcast_dims));
  Out->mutable_data<T>(ctx.GetPlace());

  const int batch_dim = ndim - 2;
  // broadcast message
  const bool is_broadcast_dims = !std::equal(
      x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim,
      y_broadcast_dims.cbegin());

  const std::int64_t x_batch_size = std::accumulate(
      x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  const std::int64_t y_batch_size = std::accumulate(
      y_broadcast_dims.cbegin(), y_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  const std::int64_t out_batch_size = std::accumulate(
      out_broadcast_dims.cbegin(), out_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  if (out_batch_size == 0) return;
  if (x_batch_size == 1 && y_batch_size == 1) {
    VLOG(3) << "MatMul's case 8";
    blas.GEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
298 299
              trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast<T>(1),
              x_data, y_data, static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
300 301 302
  } else if (x_batch_size == 1) {
    if (M == 1 && trans_y) {
      VLOG(3) << "MatMul's case 9";
S
ShenLiang 已提交
303 304
      blas.GEMV(false, y_batch_size * N, K, static_cast<T>(1), y_data, x_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
305 306 307
    } else {
      VLOG(3) << "MatMul's case 10";
      blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
308 309 310
                       trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                       static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                       Out->data<T>(), out_batch_size, 0, K * N);
S
ShenLiang 已提交
311 312 313 314 315
    }
  } else if (y_batch_size == 1) {
    if (!trans_x) {
      VLOG(3) << "MatMul's case 11";
      blas.GEMM(CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
316 317
                x_batch_size * M, N, K, static_cast<T>(1), x_data, y_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
318 319 320
    } else {
      VLOG(3) << "MatMul's case 12";
      blas.BatchedGEMM(CblasTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K,
S
ShenLiang 已提交
321 322
                       static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                       Out->data<T>(), out_batch_size, M * K, 0);
S
ShenLiang 已提交
323 324 325 326
    }
  } else if (!is_broadcast_dims) {
    VLOG(3) << "MatMul's case 13";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
327 328 329
                     trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                     static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                     Out->data<T>(), out_batch_size, M * K, K * N);
S
ShenLiang 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  } else {
    // in the case, can't use stridedgemm
    std::vector<const T*> x_ptr(out_batch_size);
    std::vector<const T*> y_ptr(out_batch_size);
    std::vector<T*> out_ptr(out_batch_size);
    std::vector<std::int64_t> index(batch_dim, 0);
    for (std::int64_t i = 0; i < out_batch_size; ++i) {
      // using the index to get offset
      const std::int64_t x_index =
          GetIndexMessage(batch_dim, x_broadcast_dims.data(), index.data());
      const std::int64_t y_index =
          GetIndexMessage(batch_dim, y_broadcast_dims.data(), index.data());

      x_ptr[i] = x_data + x_index * M * K;
      y_ptr[i] = y_data + y_index * K * N;
      out_ptr[i] = Out->data<T>() + i * M * N;
      IndexIncreaseFromDims(batch_dim, out_broadcast_dims.data(), index.data());
    }
    VLOG(3) << "MatMul's case 14";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
350 351 352
                     trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                     static_cast<T>(1), x_ptr.data(), y_ptr.data(),
                     static_cast<T>(0), out_ptr.data(), out_batch_size);
S
ShenLiang 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
  }
}

template <typename DeviceContext, typename T>
void MatMulFunction(const Tensor* X, const Tensor* Y, Tensor* Out, bool trans_x,
                    bool trans_y,
                    const paddle::framework::ExecutionContext& ctx) {
  const std::vector<std::int64_t> x_dims = vectorize(X->dims());
  const std::vector<std::int64_t> y_dims = vectorize(Y->dims());
  MatMulFunction<DeviceContext, T>(X, Y, x_dims, y_dims, Out, trans_x, trans_y,
                                   ctx);
}

template <typename DeviceContext, typename T>
class MatMulV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
    MatMulFunction<DeviceContext, T>(X, Y, Out, trans_x, trans_y, ctx);
  }
};

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static framework::Tensor FoldInitDims(const framework::Tensor& input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
static framework::Tensor FoldHeadAndLastDims(const DeviceContext& context,
                                             const framework::Tensor& input) {
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
  return output;
}

/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
static framework::DDim RowMatrixFromVector(const framework::DDim& x_dim) {
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
static framework::DDim ColumnMatrixFromVector(const framework::DDim& y_dim) {
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
    framework::Tensor* x, const math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x,
                                           framework::Tensor* y,
                                           framework::Tensor* out, bool trans_x,
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({(std::max)(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

C
chentianyu03 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
template <typename DeviceContext, typename T>
struct ConjHelper {
  explicit ConjHelper(const framework::ExecutionContext& ctx) : ctx_(ctx) {}
  HOSTDEVICE void operator()(framework::Tensor& src, framework::Tensor& dst) {
    dst.Resize(src.dims());
    dst.set_layout(src.layout());
    dst.ShareDataWith(src);
    return;
  }

  const framework::ExecutionContext& ctx_;
};

template <typename DeviceContext>
struct ConjHelper<DeviceContext, paddle::platform::complex64> {
  explicit ConjHelper(const framework::ExecutionContext& ctx) : ctx_(ctx) {}

  HOSTDEVICE void operator()(framework::Tensor& src, framework::Tensor& dst) {
    dst.Resize(src.dims());
    auto* src_data = src.data<paddle::platform::complex64>();
    auto* dst_data = dst.mutable_data<paddle::platform::complex64>(
        ctx_.GetPlace(),
        size_t(src.numel() * sizeof(paddle::platform::complex64)));

    platform::ForRange<DeviceContext> for_range(
        ctx_.template device_context<DeviceContext>(), src.numel());
    math::ConjFunctor<paddle::platform::complex64> functor(
        src_data, src.numel(), dst_data);
    for_range(functor);
    return;
  }
  const framework::ExecutionContext& ctx_;
};

template <typename DeviceContext>
struct ConjHelper<DeviceContext, paddle::platform::complex128> {
  explicit ConjHelper(const framework::ExecutionContext& ctx) : ctx_(ctx) {}

  HOSTDEVICE void operator()(framework::Tensor& src, framework::Tensor& dst) {
    dst.Resize(src.dims());
    auto* src_data = src.data<paddle::platform::complex128>();
    auto* dst_data = dst.mutable_data<paddle::platform::complex128>(
        ctx_.GetPlace(),
        size_t(src.numel() * sizeof(paddle::platform::complex128)));

    platform::ForRange<DeviceContext> for_range(
        ctx_.template device_context<DeviceContext>(), src.numel());
    math::ConjFunctor<paddle::platform::complex128> functor(
        src_data, src.numel(), dst_data);
    for_range(functor);
    return;
  }
  const framework::ExecutionContext& ctx_;
};

S
ShenLiang 已提交
527 528 529
template <typename DeviceContext, typename T>
class MatMulV2GradKernel : public framework::OpKernel<T> {
 public:
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
  void MatMul(const framework::ExecutionContext& context,
              const framework::Tensor& a, bool trans_a,
              const framework::Tensor& b, bool trans_b,
              framework::Tensor* out) const {
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
    if (a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, static_cast<T>(1), out,
                static_cast<T>(0));
  }

  void CalcInputGrad(const framework::ExecutionContext& context,
                     const framework::Tensor& a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor& b,
                     bool trans_b, bool is_fold_init_dims_b,
                     framework::Tensor* out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
      auto& ctx = context.template device_context<DeviceContext>();
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

S
ShenLiang 已提交
571
  void Compute(const framework::ExecutionContext& ctx) const override {
572 573 574 575 576 577
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");

    auto x = *ctx.Input<framework::Tensor>("X");
    auto y = *ctx.Input<framework::Tensor>("Y");
    auto dout = *ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
C
chentianyu03 已提交
578 579
    framework::Tensor y_conj(y.type());
    framework::Tensor x_conj(y.type());
S
ShenLiang 已提交
580 581

    // get dims
582 583 584
    std::vector<std::int64_t> x_dims = vectorize(x.dims());
    std::vector<std::int64_t> y_dims = vectorize(y.dims());
    std::vector<std::int64_t> dout_dims = vectorize(dout.dims());
S
ShenLiang 已提交
585 586 587 588 589 590 591 592

    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int ndim = dout_dims.size();

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

593
    // Case1 : x's or y's dim = 1
S
ShenLiang 已提交
594 595 596
    if (x_ndim == 1 && y_ndim == 1) {
      if (dx) dx->mutable_data<T>(ctx.GetPlace());
      if (dy) dy->mutable_data<T>(ctx.GetPlace());
597
      if (dout.numel() == 1) {
C
chentianyu03 已提交
598
        DotGradFunction<DeviceContext, T>()(&x, &y, &dout, dx, dy, ctx);
S
ShenLiang 已提交
599 600 601 602
        return;
      }
    }

603 604 605 606 607 608 609 610
    bool is_broadcast = true;
    if (x_ndim <= 2 || y_ndim <= 2) {
      is_broadcast = false;
    } else if (x_ndim != y_ndim) {
      is_broadcast = true;
    } else {
      is_broadcast = !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_ndim - 2,
                                 y_dims.cbegin());
S
ShenLiang 已提交
611 612
    }

613 614 615 616 617 618 619 620 621 622
    // Case2: no broadcast or no batch size, it aims to speed and it is same as
    // matmul in old version.
    if (!is_broadcast) {
      ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
      framework::DDim dx_dims;
      if (dx) {
        dx_dims = dx->dims();
        if (dx_dims != x.dims()) {
          dx->Resize(x.dims());
        }
C
chentianyu03 已提交
623 624 625 626

        // for complex
        ConjHelper<DeviceContext, T> conj_helper(ctx);
        conj_helper(y, y_conj);
627 628 629 630 631 632 633 634
      }

      framework::DDim dy_dims;
      if (dy) {
        dy_dims = dy->dims();
        if (dy_dims != y.dims()) {
          dy->Resize(y.dims());
        }
C
chentianyu03 已提交
635 636 637 638

        // for complex
        ConjHelper<DeviceContext, T> conj_helper(ctx);
        conj_helper(x, x_conj);
639 640
      }
      if (transpose_x && transpose_y) {
C
chentianyu03 已提交
641 642
        CalcInputGrad(ctx, y_conj, true, true, dout, true, false, dx);
        CalcInputGrad(ctx, dout, true, true, x_conj, true, false, dy);
643
      } else if (transpose_x) {
C
chentianyu03 已提交
644 645
        CalcInputGrad(ctx, y_conj, false, false, dout, true, false, dx);
        CalcInputGrad(ctx, x_conj, false, false, dout, false, true, dy);
646
      } else if (transpose_y) {
C
chentianyu03 已提交
647 648
        CalcInputGrad(ctx, dout, false, false, y_conj, false, true, dx);
        CalcInputGrad(ctx, dout, true, true, x_conj, false, true, dy);
S
ShenLiang 已提交
649
      } else {
C
chentianyu03 已提交
650 651
        CalcInputGrad(ctx, dout, false, false, y_conj, true, false, dx);
        CalcInputGrad(ctx, x_conj, true, true, dout, false, true, dy);
652 653 654 655 656 657 658 659 660 661 662
      }

      if (dx) {
        if (dx_dims != x.dims()) {
          dx->Resize(dx_dims);
        }
      }
      if (dy) {
        if (dy_dims != y.dims()) {
          dy->Resize(dy_dims);
        }
S
ShenLiang 已提交
663 664
      }
    } else {
665 666 667 668 669
      // Case3: broadcast. It need cost much time to reduce sum for the
      // broadcast and wastes the memory.
      // So we should avoid the case in reality.
      VLOG(3) << "It need cost much time to reduce sum for the broadcast and "
                 "wastes the memory. So we should avoid the case in reality";
670
      Tensor dx_help, dy_help;
C
chentianyu03 已提交
671 672 673 674

      ConjHelper<DeviceContext, T> conj_helper(ctx);
      conj_helper(x, x_conj);
      conj_helper(y, y_conj);
675 676 677 678
      if (transpose_x) {
        if (transpose_y) {
          // X'Y': dA = Y'G', dB = G'X'
          if (dx)
C
chentianyu03 已提交
679
            MatMulFunction<DeviceContext, T>(&y_conj, &dout, y_dims, dout_dims,
680
                                             &dx_help, true, true, ctx);
681
          if (dy)
C
chentianyu03 已提交
682
            MatMulFunction<DeviceContext, T>(&dout, &x_conj, dout_dims, x_dims,
683
                                             &dy_help, true, true, ctx);
684 685 686
        } else {
          // X'Y: dX = YG', dY = XG
          if (dx)
C
chentianyu03 已提交
687
            MatMulFunction<DeviceContext, T>(&y_conj, &dout, y_dims, dout_dims,
688
                                             &dx_help, false, true, ctx);
689
          if (dy)
C
chentianyu03 已提交
690
            MatMulFunction<DeviceContext, T>(&x_conj, &dout, x_dims, dout_dims,
691
                                             &dy_help, false, false, ctx);
692
        }
S
ShenLiang 已提交
693
      } else {
694 695 696
        if (transpose_y) {
          // XY': dX = GY, dY = G'X
          if (dx)
C
chentianyu03 已提交
697
            MatMulFunction<DeviceContext, T>(&dout, &y_conj, dout_dims, y_dims,
698
                                             &dx_help, false, false, ctx);
699
          if (dy)
C
chentianyu03 已提交
700
            MatMulFunction<DeviceContext, T>(&dout, &x_conj, dout_dims, x_dims,
701
                                             &dy_help, true, false, ctx);
702 703 704
        } else {
          // XY: dX = GY', dY = X'G
          if (dx)
C
chentianyu03 已提交
705
            MatMulFunction<DeviceContext, T>(&dout, &y_conj, dout_dims, y_dims,
706
                                             &dx_help, false, true, ctx);
707
          if (dy)
C
chentianyu03 已提交
708
            MatMulFunction<DeviceContext, T>(&x_conj, &dout, x_dims, dout_dims,
709
                                             &dy_help, true, false, ctx);
710
        }
S
ShenLiang 已提交
711
      }
712 713

      // get help dims
714 715
      const std::vector<std::int64_t> dx_help_dims = vectorize(dx_help.dims());
      const std::vector<std::int64_t> dy_help_dims = vectorize(dy_help.dims());
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

      std::vector<std::int64_t> dx_broadcast_dims(ndim);
      std::vector<std::int64_t> dy_broadcast_dims(ndim);

      std::fill(dx_broadcast_dims.data(),
                dx_broadcast_dims.data() + ndim - x_ndim, 1);
      std::fill(dy_broadcast_dims.data(),
                dy_broadcast_dims.data() + ndim - y_ndim, 1);
      std::copy(x_dims.data(), x_dims.data() + x_ndim,
                dx_broadcast_dims.data() + ndim - x_ndim);
      std::copy(y_dims.data(), y_dims.data() + y_ndim,
                dy_broadcast_dims.data() + ndim - y_ndim);

      std::vector<int> dx_reduce_dims;
      std::vector<int> dy_reduce_dims;
      for (int idx = 0; idx <= ndim - 3; idx++) {
        if (dx_help_dims[idx] != 1 && dx_broadcast_dims[idx] == 1) {
          dx_reduce_dims.push_back(idx);
        }
        if (dy_help_dims[idx] != 1 && dy_broadcast_dims[idx] == 1) {
          dy_reduce_dims.push_back(idx);
        }
S
ShenLiang 已提交
738
      }
739 740
      // reduce sum to get grad by ReduceSum
      if (dx) {
741 742 743 744 745 746
        if (dx_reduce_dims.empty()) {
          *dx = std::move(dx_help);
        } else {
          ReduceSumForMatmulGrad<DeviceContext, T>(&dx_help, dx, dx_reduce_dims,
                                                   ctx);
        }
747 748 749
        dx->Resize(x.dims());
      }
      if (dy) {
750 751 752 753 754 755
        if (dy_reduce_dims.empty()) {
          *dy = std::move(dy_help);
        } else {
          ReduceSumForMatmulGrad<DeviceContext, T>(&dy_help, dy, dy_reduce_dims,
                                                   ctx);
        }
756
        dy->Resize(y.dims());
S
ShenLiang 已提交
757 758 759 760 761 762 763
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle