Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3c2bdaa8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3c2bdaa8
编写于
10月 13, 2021
作者:
L
levi131
提交者:
GitHub
10月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
unify usage of tuple and list (#36368)
* modify format * modify format
上级
033a73c3
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
56 addition
and
69 deletion
+56
-69
python/paddle/autograd/functional.py
python/paddle/autograd/functional.py
+35
-46
python/paddle/autograd/utils.py
python/paddle/autograd/utils.py
+11
-13
python/paddle/fluid/dygraph/base.py
python/paddle/fluid/dygraph/base.py
+1
-1
python/paddle/fluid/tests/unittests/autograd/test_vjp_jvp.py
python/paddle/fluid/tests/unittests/autograd/test_vjp_jvp.py
+2
-2
python/paddle/fluid/tests/unittests/autograd/utils.py
python/paddle/fluid/tests/unittests/autograd/utils.py
+7
-7
未找到文件。
python/paddle/autograd/functional.py
浏览文件 @
3c2bdaa8
...
...
@@ -18,20 +18,7 @@ from ..fluid import framework
from
..fluid.dygraph
import
grad
from
..nn.initializer
import
assign
from
..tensor
import
reshape
,
zeros_like
,
to_tensor
from
.utils
import
_check_tensors
,
_stack_tensor_or_return_none
,
_replace_none_with_zero_tensor
def
to_tensorlist
(
tl
):
if
not
isinstance
(
tl
,
list
):
if
isinstance
(
tl
,
tuple
):
tl
=
list
(
tl
)
else
:
tl
=
[
tl
]
for
t
in
tl
:
assert
isinstance
(
t
,
paddle
.
Tensor
)
or
t
is
None
,
(
f
'
{
t
}
is expected to be paddle.Tensor or None, but found
{
type
(
t
)
}
.'
)
return
tl
from
.utils
import
_tensors
,
_stack_tensor_or_return_none
,
_replace_none_with_zero_tensor
@
contextlib
.
contextmanager
...
...
@@ -98,19 +85,19 @@ def vjp(func, inputs, v=None, create_graph=False, allow_unused=False):
reverse mode automatic differentiation.
Args:
func(Callable): `func` takes as input a tensor or a list
of tensors and returns a tensor or a list of tensors.
inputs(list[Tensor]|
Tensor): used as positional arguments
to evaluate `func`. `inputs` is accepted as one tensor
or a list of tensors.
v(list[Tensor]|
Tensor, optional): the cotangent vector
invovled in the VJP computation. `v` matches the size
and shape of `func`'s output. Default value is None
func(Callable): `func` takes as input a tensor or a list
/tuple
of tensors and returns a tensor or a list
/tuple
of tensors.
inputs(list[Tensor]|
tuple[Tensor]|Tensor): used as positional
arguments to evaluate `func`. `inputs` is accepted as one
tensor
or a list of tensors.
v(list[Tensor]|
tuple[Tensor]|Tensor|None, optional): the
cotangent vector invovled in the VJP computation. `v` matches
the size
and shape of `func`'s output. Default value is None
and in this case is equivalent to all ones the same size
of `func`'s output.
create_graph(bool, optional): if `True`, gradients can
be evaluated on the results. If `False`, taking gradients
on
the results is invalid. Default value is False.
create_graph(bool, optional): if `True`, gradients can
be
evaluated on the results. If `False`, taking gradients on
the results is invalid. Default value is False.
allow_unused(bool, optional): In case that some Tensors of
`inputs` do not contribute to the computation of the output.
If `allow_unused` is False, an error will be raised,
...
...
@@ -119,8 +106,9 @@ def vjp(func, inputs, v=None, create_graph=False, allow_unused=False):
Returns:
output(tuple):
func_out: the output of `func(inputs)`
vjp(list[Tensor]|Tensor): the pullback results of `v` on `func`
func_out(list[Tensor]|tuple[Tensor]|Tensor): the output of
`func(inputs)`
vjp(list[Tensor]): the pullback results of `v` on `func`
Examples:
.. code-block:: python
...
...
@@ -163,13 +151,13 @@ def vjp(func, inputs, v=None, create_graph=False, allow_unused=False):
# [[2., 1.],
# [1., 0.]]), None]
"""
xs
,
v
=
to_tensorlist
(
inputs
),
to_tensorlist
(
v
)
xs
,
v
=
_tensors
(
inputs
,
"inputs"
),
_tensors
(
v
,
"v"
)
with
gradient_scope
(
xs
,
v
,
create_graph
=
create_graph
,
allow_unused
=
allow_unused
)
as
[
xs
,
v
,
grad_fn
,
return_fn
]:
outputs
=
func
(
*
xs
)
ys
=
to_tensorlist
(
outputs
)
ys
=
_tensors
(
outputs
,
"outputs"
)
grads
=
grad_fn
(
ys
,
xs
,
v
)
outputs
,
grads
=
return_fn
(
outputs
),
return_fn
(
grads
)
...
...
@@ -186,16 +174,16 @@ def jvp(func, inputs, v=None, create_graph=False, allow_unused=False):
**This API is ONLY available in imperative mode.**
Args:
func(Callable): `func` takes as input a tensor or a list
of tensors and returns a tensor or a list of tensors.
inputs(list[Tensor]|
Tensor): used as positional arguments
to evaluate `func`. `inputs` is accepted as one tensor
or a list
of tensors.
v(list[Tensor]|
Tensor, optional): the tangent vector
invovled in the JVP computation. `v` matches the size
and shape of `inputs`. `v` is Optional if `func` returns
a single tensor. Default value is None and in this case
is equivalent to all ones the same size of `inputs`.
func(Callable): `func` takes as input a tensor or a list
/tuple
of tensors and returns a tensor or a list
/tuple
of tensors.
inputs(list[Tensor]|
tuple[Tensor]|Tensor): used as positional
arguments to evaluate `func`. `inputs` is accepted as one
tensor or a list/tuple
of tensors.
v(list[Tensor]|
tuple[Tensor]|Tensor|None, optional): the
tangent vector invovled in the JVP computation. `v` matches
the size and shape of `inputs`. `v` is Optional if `func`
returns a single tensor. Default value is None and in this
case
is equivalent to all ones the same size of `inputs`.
create_graph(bool, optional): if `True`, gradients can
be evaluated on the results. If `False`, taking gradients
on the results is invalid. Default value is False.
...
...
@@ -207,8 +195,9 @@ def jvp(func, inputs, v=None, create_graph=False, allow_unused=False):
Returns:
output(tuple):
func_out: the output of `func(inputs)`
jvp(list[Tensor]|Tensor): the pullback results of `v` on `func`
func_out(list[Tensor]|tuple[Tensor]|Tensor): the output of
`func(inputs)`
jvp(list[Tensor]): the pullback results of `v` on `func`
Examples:
.. code-block:: python
...
...
@@ -232,13 +221,13 @@ def jvp(func, inputs, v=None, create_graph=False, allow_unused=False):
# [0., 0.]])]
"""
xs
,
v
=
to_tensorlist
(
inputs
),
to_tensorlist
(
v
)
xs
,
v
=
_tensors
(
inputs
,
"inputs"
),
_tensors
(
v
,
"v"
)
with
gradient_scope
(
xs
,
v
,
create_graph
=
create_graph
,
allow_unused
=
allow_unused
)
as
[
xs
,
v
,
grad_fn
,
return_fn
]:
outputs
=
func
(
*
xs
)
ys
=
to_tensorlist
(
outputs
)
ys
=
_tensors
(
outputs
,
"outputs"
)
ys_grad
=
[
zeros_like
(
y
)
for
y
in
ys
]
xs_grad
=
grad_fn
(
ys
,
xs
,
ys_grad
,
create_graph
=
True
)
ys_grad
=
grad_fn
(
xs_grad
,
ys_grad
,
v
)
...
...
@@ -357,8 +346,8 @@ def jacobian(func, inputs, create_graph=False, allow_unused=False):
# [0., 0., 0., 2.]]), None))
'''
inputs
=
_
check_
tensors
(
inputs
,
"inputs"
)
outputs
=
_
check_
tensors
(
func
(
*
inputs
),
"outputs"
)
inputs
=
_tensors
(
inputs
,
"inputs"
)
outputs
=
_tensors
(
func
(
*
inputs
),
"outputs"
)
fin_size
=
len
(
inputs
)
fout_size
=
len
(
outputs
)
flat_outputs
=
tuple
(
reshape
(
output
,
shape
=
[
-
1
])
for
output
in
outputs
)
...
...
@@ -494,7 +483,7 @@ def hessian(func, inputs, create_graph=False, allow_unused=False):
# [0., 1., 1., 2.]]), None), (None, None))
'''
inputs
=
_
check_
tensors
(
inputs
,
"inputs"
)
inputs
=
_tensors
(
inputs
,
"inputs"
)
outputs
=
func
(
*
inputs
)
assert
isinstance
(
outputs
,
paddle
.
Tensor
)
and
outputs
.
shape
==
[
1
...
...
python/paddle/autograd/utils.py
浏览文件 @
3c2bdaa8
...
...
@@ -15,22 +15,20 @@
import
paddle
def
_check_tensors
(
in_out_list
,
name
):
assert
in_out_list
is
not
None
,
"{} should not be None"
.
format
(
name
)
if
isinstance
(
in_out_list
,
(
list
,
tuple
)):
assert
len
(
in_out_list
)
>
0
,
"{} connot be empyt"
.
format
(
name
)
for
each_var
in
in_out_list
:
def
_tensors
(
ts
,
name
):
if
isinstance
(
ts
,
(
list
,
tuple
)):
assert
len
(
ts
)
>
0
,
"{} connot be empty"
.
format
(
name
)
for
each_t
in
ts
:
assert
isinstance
(
each_
var
,
paddle
.
Tensor
),
"Elements of {} must be paddle.Tensor
"
.
format
(
name
)
return
list
(
in_out_list
)
each_
t
,
paddle
.
Tensor
)
or
each_t
is
None
,
"Elements of {} must be paddle.Tensor or None
"
.
format
(
name
)
return
list
(
ts
)
else
:
assert
isinstance
(
in_out_list
,
paddle
.
Tensor
)
,
"{} must be Tensor or list of Tensor"
.
format
(
name
)
return
[
in_out_list
]
ts
,
paddle
.
Tensor
)
or
ts
is
None
,
"{} must be Tensor or list of Tensor"
.
format
(
name
)
return
[
ts
]
def
_stack_tensor_or_return_none
(
origin_list
):
...
...
python/paddle/fluid/dygraph/base.py
浏览文件 @
3c2bdaa8
...
...
@@ -456,7 +456,7 @@ def grad(outputs,
the Tensors whose gradients are not needed to compute. Default None.
Returns:
tuple: a tuple
of Tensors, whose length is the same as the Tensor number
list: a list
of Tensors, whose length is the same as the Tensor number
inside `inputs`, and the i-th returned Tensor is the sum of gradients of
`outputs` with respect to the i-th `inputs`.
...
...
python/paddle/fluid/tests/unittests/autograd/test_vjp_jvp.py
浏览文件 @
3c2bdaa8
...
...
@@ -15,7 +15,7 @@
import
unittest
import
paddle
from
paddle.autograd.functional
import
vjp
,
jvp
,
to_tensorlist
from
paddle.autograd.functional
import
vjp
,
jvp
,
_tensors
from
paddle
import
grad
,
ones_like
,
zeros_like
...
...
@@ -55,7 +55,7 @@ def nested(x):
def
make_v
(
f
,
inputs
):
outputs
=
to_tensorlist
(
f
(
*
inputs
)
)
outputs
=
_tensors
(
f
(
*
inputs
),
"outputs"
)
return
[
ones_like
(
x
)
for
x
in
outputs
]
...
...
python/paddle/fluid/tests/unittests/autograd/utils.py
浏览文件 @
3c2bdaa8
...
...
@@ -14,7 +14,7 @@
import
numpy
as
np
import
paddle
from
paddle.autograd.functional
import
_
check_
tensors
from
paddle.autograd.functional
import
_tensors
def
_product
(
t
):
...
...
@@ -42,8 +42,8 @@ def _set_item(t, idx, value):
def
_compute_numerical_jacobian
(
func
,
xs
,
delta
,
np_dtype
):
xs
=
_
check_
tensors
(
xs
,
"xs"
)
ys
=
_
check_
tensors
(
func
(
*
xs
),
"ys"
)
xs
=
_tensors
(
xs
,
"xs"
)
ys
=
_tensors
(
func
(
*
xs
),
"ys"
)
fin_size
=
len
(
xs
)
fout_size
=
len
(
ys
)
jacobian
=
list
([]
for
_
in
range
(
fout_size
))
...
...
@@ -59,11 +59,11 @@ def _compute_numerical_jacobian(func, xs, delta, np_dtype):
orig
=
_get_item
(
xs
[
j
],
q
)
x_pos
=
orig
+
delta
xs
[
j
]
=
_set_item
(
xs
[
j
],
q
,
x_pos
)
ys_pos
=
_
check_
tensors
(
func
(
*
xs
),
"ys_pos"
)
ys_pos
=
_tensors
(
func
(
*
xs
),
"ys_pos"
)
x_neg
=
orig
-
delta
xs
[
j
]
=
_set_item
(
xs
[
j
],
q
,
x_neg
)
ys_neg
=
_
check_
tensors
(
func
(
*
xs
),
"ys_neg"
)
ys_neg
=
_tensors
(
func
(
*
xs
),
"ys_neg"
)
xs
[
j
]
=
_set_item
(
xs
[
j
],
q
,
orig
)
...
...
@@ -76,8 +76,8 @@ def _compute_numerical_jacobian(func, xs, delta, np_dtype):
def
_compute_numerical_hessian
(
func
,
xs
,
delta
,
np_dtype
):
xs
=
_
check_
tensors
(
xs
,
"xs"
)
ys
=
_
check_
tensors
(
func
(
*
xs
),
"ys"
)
xs
=
_tensors
(
xs
,
"xs"
)
ys
=
_tensors
(
func
(
*
xs
),
"ys"
)
fin_size
=
len
(
xs
)
hessian
=
list
([]
for
_
in
range
(
fin_size
))
for
i
in
range
(
fin_size
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录