test_static_save_load.py 71.1 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
WeiXin 已提交
15
import sys
H
hong 已提交
16 17

import unittest
18
import paddle
H
hong 已提交
19 20 21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Adam
from test_imperative_base import new_program_scope
import numpy as np
25
import pickle
H
hong 已提交
26
import os
27
import errno
28
import tempfile
H
hong 已提交
29

30 31
paddle.enable_static()

H
hong 已提交
32 33

class SimpleLSTMRNN(fluid.Layer):
34

H
hong 已提交
35 36 37 38 39 40 41
    def __init__(self,
                 name_scope,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
42
        super(SimpleLSTMRNN, self).__init__()
H
hong 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self._input = None
        self._num_steps = num_steps
        self.cell_array = []
        self.hidden_array = []

        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
            bias_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
81 82 83 84 85 86 87 88 89 90 91 92
            pre_hidden = fluid.layers.slice(init_hidden,
                                            axes=[0],
                                            starts=[i],
                                            ends=[i + 1])
            pre_cell = fluid.layers.slice(init_cell,
                                          axes=[0],
                                          starts=[i],
                                          ends=[i + 1])
            pre_hidden = fluid.layers.reshape(pre_hidden,
                                              shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(pre_cell,
                                            shape=[-1, self._hidden_size])
H
hong 已提交
93 94 95 96 97
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
        for index in range(self._num_steps):
98 99 100 101 102 103
            self._input = fluid.layers.slice(input_embedding,
                                             axes=[1],
                                             starts=[index],
                                             ends=[index + 1])
            self._input = fluid.layers.reshape(self._input,
                                               shape=[-1, self._hidden_size])
H
hong 已提交
104 105 106 107 108 109 110 111 112 113
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

                nn = fluid.layers.concat([self._input, pre_hidden], 1)
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
114 115 116
                i, j, f, o = fluid.layers.split(gate_input,
                                                num_or_sections=4,
                                                dim=-1)
H
hong 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
130 131
                fluid.layers.reshape(self._input,
                                     shape=[1, -1, self._hidden_size]))
H
hong 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell


class PtbModel(fluid.Layer):
146

H
hong 已提交
147 148 149 150 151 152 153 154
    def __init__(self,
                 name_scope,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
155
        super(PtbModel, self).__init__()
H
hong 已提交
156 157 158 159 160 161
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
162 163 164 165 166 167
        self.simple_lstm_rnn = SimpleLSTMRNN(self.full_name(),
                                             hidden_size,
                                             num_steps,
                                             num_layers=num_layers,
                                             init_scale=init_scale,
                                             dropout=dropout)
168 169 170 171
        self.embedding = paddle.nn.Embedding(
            num_embeddings=vocab_size,
            embedding_dim=hidden_size,
            weight_attr=fluid.ParamAttr(
H
hong 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

195 196
        # NPU 'tok_k' kernel only support `int32` dtype, so cast `input` from `int64` to `int32`.
        input = fluid.layers.cast(input, "int32")
H
hong 已提交
197 198 199 200 201 202 203 204
        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
205 206
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(
            x_emb, init_h, init_c)
H
hong 已提交
207 208 209 210 211

        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
212 213 214 215 216
        projection = fluid.layers.reshape(projection,
                                          shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(logits=projection,
                                                       label=label,
                                                       soft_label=False)
H
hong 已提交
217 218 219 220 221 222 223
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell


224
class TestSaveLoadBase(unittest.TestCase):
225

226
    def set_place(self):
227 228
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
229

H
hong 已提交
230 231 232 233 234 235 236 237 238
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
239
        temp_dir = tempfile.TemporaryDirectory()
H
hong 已提交
240 241 242 243

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
244 245 246 247 248 249
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
250

251
            place = self.set_place()
H
hong 已提交
252 253
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
254 255 256
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
257
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
258 259 260 261 262 263
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
283 284
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
302
                if isinstance(var, framework.Parameter) or var.persistable:
303 304
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
305
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
306 307 308
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

309
            fluid.save(main_program, os.path.join(temp_dir.name, "test_1"))
H
hong 已提交
310 311 312

            # set var to zero
            for var in main_program.list_vars():
313
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
314 315 316
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

317 318
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
319
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
320 321
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

322 323
            fluid.load(main_program,
                       os.path.join(temp_dir.name, "test_1.pdparams"), exe)
H
hong 已提交
324 325

            for var in main_program.list_vars():
326
                if isinstance(var, framework.Parameter) or var.persistable:
327 328
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
329
                    base_t = base_map[var.name]
330
                    np.testing.assert_array_equal(new_t, base_t)
331
            temp_dir.cleanup()
H
hong 已提交
332 333


334
class TestSaveLoadPartial(unittest.TestCase):
335

336
    def set_place(self):
337 338
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
339

H
hong 已提交
340 341 342 343 344 345 346 347 348
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
349
        temp_dir = tempfile.TemporaryDirectory()
H
hong 已提交
350 351 352 353

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
354 355 356 357 358 359
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
360

361
            place = self.set_place()
H
hong 已提交
362 363
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
364 365 366
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
367
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
368 369 370 371 372 373
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
401 402
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
420
                if isinstance(var, framework.Parameter) or var.persistable:
421 422
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
423
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
424 425 426
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

427
            fluid.save(main_program, os.path.join(temp_dir.name, "test_1"))
H
hong 已提交
428 429 430

            # set var to zero
            for var in main_program.list_vars():
431
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
432 433 434
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

435 436
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
437
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
438 439
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

440 441
            fluid.load(test_program, os.path.join(temp_dir.name,
                                                  "test_1.pdopt"), None)
H
hong 已提交
442 443

            for var in test_program.list_vars():
444
                if isinstance(var, framework.Parameter) or var.persistable:
445 446
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
447
                    base_t = base_map[var.name]
448
                    np.testing.assert_array_equal(new_t, base_t)
449 450 451
            fluid.load(test_program,
                       os.path.join(temp_dir.name, "test_1.pdmodel"), None)
            temp_dir.cleanup()
H
hong 已提交
452 453


454
class TestSaveLoadSetStateDict(unittest.TestCase):
455

456
    def set_place(self):
457 458
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
459

460 461 462 463 464 465 466 467 468
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
469
        temp_dir = tempfile.TemporaryDirectory()
470 471 472 473

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
474 475 476 477 478 479
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
480

481
            place = self.set_place()
482 483
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
484 485 486
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
487
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
488 489 490 491 492 493
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
513 514
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
533 534
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
535
                    # make sure all the paramerter or optimizer var have been update
536 537 538
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

539
            fluid.save(main_program, os.path.join(temp_dir.name, "test_1"))
540 541 542 543 544 545 546

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

547 548
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
549
                    # make sure all the paramerter or optimizer var have been set to zero
550 551
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

552
            fluid.load(main_program, os.path.join(temp_dir.name, "test_1"), exe)
553 554 555

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
556 557
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
558
                    base_t = base_map[var.name]
559
                    np.testing.assert_array_equal(new_t, base_t)
560
            temp_dir.cleanup()
561 562 563


class TestProgramStatePartial(unittest.TestCase):
564

565
    def set_place(self):
566 567
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
568

569 570 571 572 573 574 575 576 577
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
578
        temp_dir = tempfile.TemporaryDirectory()
579 580 581 582

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
583 584 585 586 587 588
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
589

590
            place = self.set_place()
591 592
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
593 594 595
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
596
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
597 598 599 600 601 602
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
630 631
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
650 651
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
652
                    # make sure all the paramerter or optimizer var have been update
653 654 655
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

656
            fluid.save(main_program, os.path.join(temp_dir.name, 'test_1'))
657 658 659 660 661 662 663

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

664 665
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
666
                    # make sure all the paramerter or optimizer var have been set to zero
667 668 669
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
670
            program_state = fluid.load_program_state(
671
                os.path.join(temp_dir.name, 'test_1'))
H
hong 已提交
672 673

            program_state_1 = fluid.load_program_state(
674
                os.path.join(temp_dir.name, 'test_1.pdparams'))
H
hong 已提交
675 676

            program_state_2 = fluid.load_program_state(
677
                os.path.join(temp_dir.name, 'test_1.pdopt'))
H
hong 已提交
678 679

            program_state_3 = fluid.load_program_state(
680
                os.path.join(temp_dir.name, 'test_1.pdmodel'))
H
hong 已提交
681

682 683 684 685
            fluid.set_program_state(test_program, program_state)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
686 687
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
688
                    base_t = base_map[var.name]
689
                    np.testing.assert_array_equal(new_t, base_t)
690

H
hong 已提交
691 692 693 694 695 696
            # check 1
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

697 698
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
699
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
700 701 702 703 704 705
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_1)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
706 707
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
708
                    base_t = base_map[var.name]
709
                    np.testing.assert_array_equal(new_t, base_t)
H
hong 已提交
710 711 712 713 714 715 716

            # check 2
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

717 718
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
719
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
720 721 722 723 724 725
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_2)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
726 727
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
728
                    base_t = base_map[var.name]
729
                    np.testing.assert_array_equal(new_t, base_t)
H
hong 已提交
730 731 732 733 734 735 736

            # check 3
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

737 738
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
739
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
740 741 742 743 744 745
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_3)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
746 747
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
748
                    base_t = base_map[var.name]
749
                    np.testing.assert_array_equal(new_t, base_t)
750
            temp_dir.cleanup()
H
hong 已提交
751

752 753

class TestVariableInit(unittest.TestCase):
754

755
    def set_place(self):
756 757
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
758

759 760 761 762 763 764
    def test_variable_init(self):

        x = fluid.data(name="x", shape=[10, 10], dtype='float32')
        y = fluid.layers.fc(x, 10)
        z = fluid.layers.fc(y, 10)

765
        place = self.set_place()
766 767 768
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

769 770 771
        temp_dir = tempfile.TemporaryDirectory()
        fluid.save(fluid.default_main_program(),
                   os.path.join(temp_dir.name, "test_path"))
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

        def set_var(var, ndarray):
            t = var.get_tensor()
            p = t._place()
            if p.is_cpu_place():
                place = paddle.fluid.CPUPlace()
            elif p.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            else:
                p = paddle.fluid.core.Place()
                p.set_place(t._place())
                place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            t.set(ndarray, place)

        program = fluid.default_main_program()
        new_scope = fluid.core.Scope()

790
        place = self.set_place()
791
        exe = fluid.Executor(place)
792 793
        parameter_list = list(filter(fluid.io.is_parameter,
                                     program.list_vars()))
794 795 796

        fluid.core._create_loaded_parameter(parameter_list, new_scope,
                                            exe._default_executor)
797
        parameter_file_name = os.path.join(temp_dir.name, "test_path.pdparams")
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
        with open(parameter_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in parameter_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, parameter_file_name)
            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        opt_list = list(
            filter(fluid.io.is_belong_to_optimizer, program.list_vars()))

        fluid.core._create_loaded_parameter(opt_list, new_scope,
                                            exe._default_executor)
813
        opt_file_name = os.path.join(temp_dir.name, "test_path.pdopt")
814 815 816 817 818 819 820 821 822 823 824 825 826 827
        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in opt_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)

            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        base_map = {}
        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
828 829
                t = np.array(fluid.global_scope().find_var(
                    var.name).get_tensor())
T
tianshuo78520a 已提交
830
                # make sure all the paramerter or optimizer var have been update
831 832 833 834 835 836 837
                base_map[var.name] = t

        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                new_t = np.array(new_scope.find_var(var.name).get_tensor())
                base_t = base_map[var.name]

838
                np.testing.assert_array_equal(new_t, base_t)
839
        temp_dir.cleanup()
840 841


H
hong 已提交
842
class TestLoadFromOldInterface(unittest.TestCase):
843

H
hong 已提交
844 845 846 847
    def setUp(self):
        if os.path.exists("test_path.pdparams"):
            os.remove("test_path.pdparams")

848 849 850
        if os.path.exists("test_static_load_var_list.pdparams"):
            os.remove("test_static_load_var_list.pdparams")

851 852
        self.temp_dir = tempfile.TemporaryDirectory()

853
    def set_place(self):
854 855
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
856

857 858 859
    def tearDown(self):
        self.temp_dir.cleanup()

H
hong 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872
    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
873 874 875 876 877 878
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
879

880
            place = self.set_place()
H
hong 已提交
881 882
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
883 884 885
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
886
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
887 888 889 890 891 892
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_clone_program = fluid.default_main_program().clone()
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
914 915
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
934 935
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
936
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
937 938 939 940
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
941 942 943
            fluid.io.save_persistables(
                exe, os.path.join(self.temp_dir.name, "test_path"),
                main_program)
H
hong 已提交
944 945 946 947 948 949 950

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

951 952
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
953
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
954 955
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

956 957
            fluid.load(main_program,
                       os.path.join(self.temp_dir.name, "test_path"), exe)
H
hong 已提交
958 959 960

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
961 962
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
963
                    base_t = base_map[var.name]
964
                    np.testing.assert_array_equal(new_t, base_t)
H
hong 已提交
965 966 967 968 969 970 971 972 973

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)
            with self.assertRaises(RuntimeError):
974 975
                fluid.load(main_program,
                           os.path.join(self.temp_dir.name, "test_path"), exe)
H
hong 已提交
976

T
tianshuo78520a 已提交
977
            # check unused parameter
H
hong 已提交
978

979 980
            fluid.load(test_clone_program,
                       os.path.join(self.temp_dir.name, "test_path"), exe)
H
hong 已提交
981

982 983 984 985 986 987 988 989 990 991 992 993 994
    def test_load_from_old_interface_var_list(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
995 996 997 998 999 1000
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
1001

1002
            place = self.set_place()
1003 1004
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
1005 1006 1007
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
1008
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
1009 1010 1011 1012 1013 1014
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_clone_program = fluid.default_main_program().clone()
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
1036 1037
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1056 1057
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
1058 1059 1060 1061 1062
                    # make sure all the paramerter or optimizer var have been update
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
1063 1064 1065 1066
            fluid.io.save_persistables(
                exe,
                os.path.join(self.temp_dir.name, "test_static_load_var_list"),
                main_program)
1067

1068
            # set var to zero
1069 1070 1071 1072 1073 1074 1075 1076
            var_list = []
            for i, var in enumerate(main_program.list_vars()):
                if isinstance(var, framework.Parameter) or var.persistable:
                    if i % 2 == 0:
                        var_list.append(var)
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

1077 1078
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
1079 1080 1081
                    # make sure all the paramerter or optimizer var have been set to zero
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

1082 1083 1084 1085
            fluid.load(
                main_program,
                os.path.join(self.temp_dir.name, "test_static_load_var_list"),
                exe, var_list)
1086 1087 1088
            var_list_names = [var.name for var in var_list]
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1089 1090
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
1091 1092 1093
                    if var.name in var_list_names:
                        # loaded vars
                        base_t = base_map[var.name]
1094
                        np.testing.assert_array_equal(new_t, base_t)
1095 1096 1097 1098
                    else:
                        #not loaded vars
                        self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
1099 1100

class TestLoadFromOldInterfaceSingleFile(unittest.TestCase):
1101

1102
    def set_place(self):
1103 1104
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
1105

H
hong 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114
    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
1115
        temp_dir = tempfile.TemporaryDirectory()
H
hong 已提交
1116 1117 1118 1119

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
1120 1121 1122 1123 1124 1125
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
1126

1127
            place = self.set_place()
H
hong 已提交
1128 1129
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
1130 1131 1132
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
1133
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
1134 1135 1136 1137 1138 1139
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
1159 1160
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1179 1180
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1181
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1182 1183
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t
1184
            save_dir = os.path.join(temp_dir.name, "test_path")
H
hong 已提交
1185
            #fluid.save(main_program, "./test_1")
1186
            fluid.io.save_persistables(exe,
1187
                                       save_dir,
1188 1189
                                       main_program,
                                       filename="model_single")
H
hong 已提交
1190 1191 1192 1193 1194 1195 1196

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

1197 1198
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1199
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1200 1201
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

1202
            file_model_path = os.path.join(save_dir, "model_single")
H
hong 已提交
1203 1204 1205 1206 1207
            fluid.load(main_program, file_model_path, exe,
                       fluid.io.get_program_persistable_vars(main_program))

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1208 1209
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
1210
                    base_t = base_map[var.name]
1211
                    np.testing.assert_array_equal(new_t, base_t)
H
hong 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

            # test exception
            # change shape
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)

            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

1227 1228 1229 1230
            fluid.io.save_params(exe,
                                 "test_path",
                                 main_program,
                                 filename="model_single")
H
hong 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when executor is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, None,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when var list is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, exe, None)

            # check save params, load var_list = get_program_persistable_vars
            with self.assertRaises(RuntimeError):
1246 1247 1248
                temp_var = framework.Variable(main_program.global_block(),
                                              shape=[1],
                                              name="test_temp_var")
H
hong 已提交
1249 1250 1251
                all_var_list = list(main_program.list_vars())
                fluid.load(main_program, file_model_path, exe,
                           all_var_list + [temp_var])
1252
        temp_dir.cleanup()
H
hong 已提交
1253 1254


H
hong 已提交
1255
class TestProgramStateOldSave(unittest.TestCase):
1256

1257 1258
    def setUp(self):
        self.test_dygraph = True
1259 1260 1261 1262
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()
1263 1264

    def set_place(self):
1265 1266
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
1267

H
hong 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
1281 1282 1283 1284 1285 1286
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
1287

1288
            place = self.set_place()
H
hong 已提交
1289 1290
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
1291 1292 1293
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
1294
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
1295 1296 1297 1298 1299 1300
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
1328 1329
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1348 1349
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1350
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1351 1352
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t
1353 1354
            save_dir = os.path.join(self.temp_dir.name, "test_program_1")
            fluid.io.save_persistables(exe, save_dir, main_program)
H
hong 已提交
1355 1356 1357 1358 1359 1360 1361

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

1362 1363
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1364
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1365 1366
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

1367
            # case 1: load basic
1368
            program_state = fluid.load_program_state(save_dir)
H
hong 已提交
1369
            fluid.set_program_state(main_program, program_state)
1370 1371 1372
            self.check_in_static(main_program, base_map)

            # case 2: load with no need file
1373 1374
            def symlink_force(target, link_name):
                try:
1375
                    self.create_symlink(target, link_name)
1376 1377 1378
                except OSError as e:
                    if e.errno == errno.EEXIST:
                        os.remove(link_name)
1379
                        self.create_symlink(target, link_name)
1380 1381 1382
                    else:
                        raise e

1383
            program_state = fluid.load_program_state(save_dir)
1384 1385
            fluid.set_program_state(main_program, program_state)
            self.check_in_static(main_program, base_map)
H
hong 已提交
1386

1387 1388
            # case 3: load with var_list
            program_state = fluid.load_program_state(
1389
                save_dir, main_program.all_parameters())
1390 1391
            fluid.set_program_state(main_program, program_state)
            self.check_in_static(main_program, base_map)
H
hong 已提交
1392

1393 1394 1395
        if self.test_dygraph:
            # make sure `load_program_state` can be used in dynamic graph mode
            with fluid.dygraph.guard(place):
1396
                load_state = fluid.load_program_state(save_dir)
1397
                for k, v in load_state.items():
1398
                    np.testing.assert_array_equal(base_map[k], v)
1399

1400 1401 1402 1403 1404 1405 1406 1407
    def create_symlink(self, target, link_name):
        try:
            os.symlink(target, link_name)
        except AttributeError:
            import ctypes
            kernel_dll = ctypes.windll.LoadLibrary("kernel32.dll")
            kernel_dll.CreateSymbolicLinkA(target, link_name, 0)

1408 1409 1410
    def check_in_static(self, main_program, base_map):
        for var in main_program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
1411 1412
                new_t = np.array(fluid.global_scope().find_var(
                    var.name).get_tensor())
1413
                base_t = base_map[var.name]
1414
                np.testing.assert_array_equal(new_t, base_t)
1415

H
hong 已提交
1416 1417

class TestProgramStateOldSaveSingleModel(unittest.TestCase):
1418

1419
    def set_place(self):
1420 1421
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
1422

H
hong 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200
1432
        temp_dir = tempfile.TemporaryDirectory()
H
hong 已提交
1433 1434 1435 1436

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
1437 1438 1439 1440 1441 1442
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
1443

1444
            place = self.set_place()
H
hong 已提交
1445 1446
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
1447 1448 1449
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
1450
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
1451 1452 1453 1454 1455 1456
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
1484 1485
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1504 1505
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1506
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1507 1508 1509
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

1510
            save_dir = os.path.join(temp_dir.name, "test_program_2")
1511
            fluid.io.save_persistables(exe,
1512
                                       save_dir,
1513 1514
                                       main_program,
                                       filename="model_1")
H
hong 已提交
1515 1516 1517 1518 1519 1520 1521

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

1522 1523
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1524
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1525 1526 1527 1528
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
            program_state = fluid.load_program_state(
1529
                os.path.join(save_dir, "model_1"),
H
hong 已提交
1530 1531 1532 1533 1534
                var_list=fluid.io.get_program_persistable_vars(main_program))
            fluid.set_program_state(main_program, program_state)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1535 1536
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
1537
                    base_t = base_map[var.name]
1538
                    np.testing.assert_array_equal(new_t, base_t)
H
hong 已提交
1539 1540

            with self.assertRaises(ValueError):
1541
                fluid.load_program_state(os.path.join(save_dir, "model_1"))
H
hong 已提交
1542 1543

            with self.assertRaises(TypeError):
1544
                fluid.load_program_state(os.path.join(save_dir, "model_1"),
1545
                                         var_list=["str"])
H
hong 已提交
1546 1547 1548

            with self.assertRaises(RuntimeError):
                fluid.load_program_state(
1549
                    os.path.join(save_dir, "model_1"),
H
hong 已提交
1550 1551 1552 1553
                    var_list=[
                        main_program.global_block().create_var(
                            name="fake_var_name", persistable=True)
                    ])
1554
        temp_dir.cleanup()
H
hong 已提交
1555 1556


W
WeiXin 已提交
1557
class TestStaticSaveLoadPickle(unittest.TestCase):
1558

W
WeiXin 已提交
1559 1560 1561 1562 1563 1564
    def test_pickle_protocol(self):
        # enable static mode
        paddle.enable_static()

        with new_program_scope():
            # create network
1565 1566 1567
            x = paddle.static.data(name="static_save_load_large_x",
                                   shape=[None, 10],
                                   dtype='float32')
W
WeiXin 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576
            z = paddle.static.nn.fc(x, 10, bias_attr=False)
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()

            base_map = {}
            for var in prog.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1577 1578
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
W
WeiXin 已提交
1579 1580 1581 1582
                    # make sure all the paramerter or optimizer var have been update
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

1583 1584
            temp_dir = tempfile.TemporaryDirectory()
            path = os.path.join(temp_dir.name, "test_static_save_load_pickle",
W
WeiXin 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
                                "pickle_protocol")

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 2.0)

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 1)

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 5)

1596 1597 1598
            protocols = [
                2,
            ]
W
WeiXin 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
            if sys.version_info.major >= 3 and sys.version_info.minor >= 4:
                protocols += [3, 4]
            for protocol in protocols:
                paddle.fluid.save(prog, path, protocol)
                # set var to zero
                for var in prog.list_vars():
                    if isinstance(var, framework.Parameter) or var.persistable:
                        ten = fluid.global_scope().find_var(
                            var.name).get_tensor()
                        ten.set(np.zeros_like(np.array(ten)), place)

1610 1611
                        new_t = np.array(fluid.global_scope().find_var(
                            var.name).get_tensor())
W
WeiXin 已提交
1612 1613 1614 1615 1616 1617
                        self.assertTrue(np.sum(np.abs(new_t)) == 0)

                paddle.fluid.load(prog, path)

                for var in prog.list_vars():
                    if isinstance(var, framework.Parameter) or var.persistable:
1618 1619
                        new_t = np.array(fluid.global_scope().find_var(
                            var.name).get_tensor())
W
WeiXin 已提交
1620
                        base_t = base_map[var.name]
1621
                        np.testing.assert_array_equal(new_t, base_t)
W
WeiXin 已提交
1622 1623


1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
class TestSaveLoadInferenceModel(unittest.TestCase):

    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()
        self.model_path = os.path.join(self.temp_dir.name, 'no_params')

    def tearDown(self):
        self.temp_dir.cleanup()

    def test_no_params(self):
        main_program = framework.Program()
        with framework.program_guard(main_program):
            x = paddle.static.data(name="x", shape=[10, 10], dtype='float32')
            y = x + x

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)

            paddle.static.save_inference_model(self.model_path, [x], [y], exe)

            [inference_program, feed_target_names, fetch_targets
             ] = (paddle.static.load_inference_model(self.model_path, exe))

            self.assertEqual(feed_target_names, ['x'])
            self.assertEqual(fetch_targets[0].shape, (10, 10))
            ops = [op.type for op in inference_program.block(0).ops]
            self.assertEqual(ops, ['feed', 'elementwise_add', 'scale', 'fetch'])


H
hong 已提交
1653
if __name__ == '__main__':
1654
    paddle.enable_static()
H
hong 已提交
1655
    unittest.main()