test_static_save_load.py 65.6 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
W
WeiXin 已提交
16
import sys
H
hong 已提交
17 18

import unittest
19
import paddle
H
hong 已提交
20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
22
from paddle.nn import Embedding
H
hong 已提交
23 24 25 26
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Adam
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
27
from paddle.fluid.executor import global_scope
H
hong 已提交
28 29
import numpy as np
import six
30
import pickle
H
hong 已提交
31
import os
32
import errno
H
hong 已提交
33

34 35
paddle.enable_static()

H
hong 已提交
36 37 38 39 40 41 42 43 44

class SimpleLSTMRNN(fluid.Layer):
    def __init__(self,
                 name_scope,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
45
        super(SimpleLSTMRNN, self).__init__()
H
hong 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self._input = None
        self._num_steps = num_steps
        self.cell_array = []
        self.hidden_array = []

        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
            bias_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

                nn = fluid.layers.concat([self._input, pre_hidden], 1)
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell


class PtbModel(fluid.Layer):
    def __init__(self,
                 name_scope,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
150
        super(PtbModel, self).__init__()
H
hong 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            self.full_name(),
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
164 165 166 167
        self.embedding = paddle.nn.Embedding(
            num_embeddings=vocab_size,
            embedding_dim=hidden_size,
            weight_attr=fluid.ParamAttr(
H
hong 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

191 192
        # NPU 'tok_k' kernel only support `int32` dtype, so cast `input` from `int64` to `int32`.
        input = fluid.layers.cast(input, "int32")
H
hong 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)

        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell


219
class TestSaveLoadBase(unittest.TestCase):
220 221 222 223
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

245
            place = self.set_place()
H
hong 已提交
246 247 248
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
249
                name="x", shape=[-1, num_steps], dtype='int64')
H
hong 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
293
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
294 295
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
296
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
297 298 299 300 301 302 303
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.save(main_program, "./test_1")

            # set var to zero
            for var in main_program.list_vars():
304
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
305 306 307 308 309
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
310
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
311 312
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
313
            fluid.load(main_program, "./test_1.pdparams", exe)
H
hong 已提交
314 315

            for var in main_program.list_vars():
316
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
317 318 319 320 321 322
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))


323
class TestSaveLoadPartial(unittest.TestCase):
324 325 326 327
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

349
            place = self.set_place()
H
hong 已提交
350 351 352
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
353
                name="x", shape=[-1, num_steps], dtype='int64')
H
hong 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
405
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
406 407
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
408
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
409 410 411 412 413 414 415
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.save(main_program, "./test_1")

            # set var to zero
            for var in main_program.list_vars():
416
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
417 418 419 420 421
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
422
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
423 424
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
425
            fluid.load(test_program, "./test_1.pdopt", None)
H
hong 已提交
426 427

            for var in test_program.list_vars():
428
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
429 430 431 432
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))
H
hong 已提交
433
            fluid.load(test_program, "./test_1.pdmodel", None)
H
hong 已提交
434 435


436
class TestSaveLoadSetStateDict(unittest.TestCase):
437 438 439 440
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

462
            place = self.set_place()
463 464 465
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
466
                name="x", shape=[-1, num_steps], dtype='int64')
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
513
                    # make sure all the paramerter or optimizer var have been update
514 515 516 517 518 519 520 521 522 523 524 525 526
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.save(main_program, "./test_1")

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
527
                    # make sure all the paramerter or optimizer var have been set to zero
528 529 530 531 532 533 534 535 536 537 538 539 540
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.load(main_program, "./test_1", exe)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))


class TestProgramStatePartial(unittest.TestCase):
541 542 543 544
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

566
            place = self.set_place()
567 568 569
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
570
                name="x", shape=[-1, num_steps], dtype='int64')
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
625
                    # make sure all the paramerter or optimizer var have been update
626 627 628
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

629
            fluid.save(main_program, os.path.join('some_dir', 'test_1'))
630 631 632 633 634 635 636 637 638

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
639
                    # make sure all the paramerter or optimizer var have been set to zero
640 641 642
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
643 644
            program_state = fluid.load_program_state(
                os.path.join('some_dir', 'test_1'))
H
hong 已提交
645 646 647 648 649 650 651 652 653 654

            program_state_1 = fluid.load_program_state(
                os.path.join('some_dir', 'test_1.pdparams'))

            program_state_2 = fluid.load_program_state(
                os.path.join('some_dir', 'test_1.pdopt'))

            program_state_3 = fluid.load_program_state(
                os.path.join('some_dir', 'test_1.pdmodel'))

655 656 657 658 659 660 661 662 663
            fluid.set_program_state(test_program, program_state)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

H
hong 已提交
664 665 666 667 668 669 670 671
            # check 1
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
672
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_1)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # check 2
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
692
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_2)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # check 3
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
712
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
713 714 715 716 717 718 719 720 721 722 723
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_3)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

724 725

class TestVariableInit(unittest.TestCase):
726 727 728 729
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

730 731 732 733 734 735
    def test_variable_init(self):

        x = fluid.data(name="x", shape=[10, 10], dtype='float32')
        y = fluid.layers.fc(x, 10)
        z = fluid.layers.fc(y, 10)

736
        place = self.set_place()
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        fluid.save(fluid.default_main_program(), "./test_path")

        def set_var(var, ndarray):
            t = var.get_tensor()
            p = t._place()
            if p.is_cpu_place():
                place = paddle.fluid.CPUPlace()
            elif p.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            else:
                p = paddle.fluid.core.Place()
                p.set_place(t._place())
                place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            t.set(ndarray, place)

        program = fluid.default_main_program()
        new_scope = fluid.core.Scope()

759
        place = self.set_place()
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
        exe = fluid.Executor(place)
        parameter_list = list(
            filter(fluid.io.is_parameter, program.list_vars()))

        fluid.core._create_loaded_parameter(parameter_list, new_scope,
                                            exe._default_executor)
        parameter_file_name = "./test_path.pdparams"
        with open(parameter_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in parameter_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, parameter_file_name)
            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        opt_list = list(
            filter(fluid.io.is_belong_to_optimizer, program.list_vars()))

        fluid.core._create_loaded_parameter(opt_list, new_scope,
                                            exe._default_executor)
        opt_file_name = "./test_path.pdopt"
        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in opt_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)

            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        base_map = {}
        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                t = np.array(fluid.global_scope().find_var(var.name)
                             .get_tensor())
T
tianshuo78520a 已提交
799
                # make sure all the paramerter or optimizer var have been update
800 801 802 803 804 805 806 807 808 809
                base_map[var.name] = t

        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                new_t = np.array(new_scope.find_var(var.name).get_tensor())
                base_t = base_map[var.name]

                self.assertTrue(np.array_equal(new_t, base_t))


H
hong 已提交
810 811 812 813 814
class TestLoadFromOldInterface(unittest.TestCase):
    def setUp(self):
        if os.path.exists("test_path.pdparams"):
            os.remove("test_path.pdparams")

815 816 817
        if os.path.exists("test_static_load_var_list.pdparams"):
            os.remove("test_static_load_var_list.pdparams")

818 819 820 821
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

843
            place = self.set_place()
H
hong 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_clone_program = fluid.default_main_program().clone()
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
896
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
            fluid.io.save_persistables(exe, "test_path", main_program)

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
911
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.load(main_program, "test_path", exe)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)
            with self.assertRaises(RuntimeError):
                fluid.load(main_program, "test_path", exe)

T
tianshuo78520a 已提交
933
            # check unused parameter
H
hong 已提交
934 935 936

            fluid.load(test_clone_program, "test_path", exe)

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
    def test_load_from_old_interface_var_list(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

958
            place = self.set_place()
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_clone_program = fluid.default_main_program().clone()
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
                    # make sure all the paramerter or optimizer var have been update
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
            fluid.io.save_persistables(exe, "test_static_load_var_list",
                                       main_program)

            # set var to zero            
            var_list = []
            for i, var in enumerate(main_program.list_vars()):
                if isinstance(var, framework.Parameter) or var.persistable:
                    if i % 2 == 0:
                        var_list.append(var)
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    # make sure all the paramerter or optimizer var have been set to zero
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.load(main_program, "test_static_load_var_list", exe, var_list)
            var_list_names = [var.name for var in var_list]
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    if var.name in var_list_names:
                        # loaded vars
                        base_t = base_map[var.name]
                        self.assertTrue(np.array_equal(new_t, base_t))
                    else:
                        #not loaded vars
                        self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
1047 1048

class TestLoadFromOldInterfaceSingleFile(unittest.TestCase):
1049 1050 1051 1052
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

1074
            place = self.set_place()
H
hong 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
1125
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
            fluid.io.save_persistables(
                exe, "test_path", main_program, filename="model_single")

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
1141
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            file_model_path = os.path.join("test_path", "model_single")
            fluid.load(main_program, file_model_path, exe,
                       fluid.io.get_program_persistable_vars(main_program))

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # test exception
            # change shape
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)

            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

            fluid.io.save_params(
                exe, "test_path", main_program, filename="model_single")
            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when executor is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, None,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when var list is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, exe, None)

            # check save params, load var_list = get_program_persistable_vars
            with self.assertRaises(RuntimeError):
                temp_var = framework.Variable(
                    main_program.global_block(),
                    shape=[1],
                    name="test_temp_var")
                all_var_list = list(main_program.list_vars())
                fluid.load(main_program, file_model_path, exe,
                           all_var_list + [temp_var])


H
hong 已提交
1195
class TestProgramStateOldSave(unittest.TestCase):
1196 1197 1198 1199 1200 1201 1202
    def setUp(self):
        self.test_dygraph = True

    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

1224
            place = self.set_place()
H
hong 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
1283
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.io.save_persistables(exe, "test_program_1", main_program)

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
1297
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1298 1299
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

1300
            # case 1: load basic
H
hong 已提交
1301 1302
            program_state = fluid.load_program_state("test_program_1")
            fluid.set_program_state(main_program, program_state)
1303 1304 1305
            self.check_in_static(main_program, base_map)

            # case 2: load with no need file
1306 1307
            def symlink_force(target, link_name):
                try:
1308
                    self.create_symlink(target, link_name)
1309 1310 1311
                except OSError as e:
                    if e.errno == errno.EEXIST:
                        os.remove(link_name)
1312
                        self.create_symlink(target, link_name)
1313 1314 1315
                    else:
                        raise e

1316 1317
            orig_filepath = './test_program_1/fc_0.w_0'
            symlink_filepath = './test_program_1/link_fc_0.w_0'
1318 1319
            # create a needless link file for coverage
            symlink_force(orig_filepath, symlink_filepath)
1320 1321 1322
            program_state = fluid.load_program_state("test_program_1")
            fluid.set_program_state(main_program, program_state)
            self.check_in_static(main_program, base_map)
H
hong 已提交
1323

1324 1325 1326 1327 1328
            # case 3: load with var_list
            program_state = fluid.load_program_state(
                "test_program_1", main_program.all_parameters())
            fluid.set_program_state(main_program, program_state)
            self.check_in_static(main_program, base_map)
H
hong 已提交
1329

1330 1331 1332 1333 1334 1335
        if self.test_dygraph:
            # make sure `load_program_state` can be used in dynamic graph mode
            with fluid.dygraph.guard(place):
                load_state = fluid.load_program_state("test_program_1")
                for k, v in load_state.items():
                    self.assertTrue(np.array_equal(base_map[k], v))
1336

1337 1338 1339 1340 1341 1342 1343 1344
    def create_symlink(self, target, link_name):
        try:
            os.symlink(target, link_name)
        except AttributeError:
            import ctypes
            kernel_dll = ctypes.windll.LoadLibrary("kernel32.dll")
            kernel_dll.CreateSymbolicLinkA(target, link_name, 0)

1345 1346 1347 1348 1349 1350 1351 1352
    def check_in_static(self, main_program, base_map):
        for var in main_program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                new_t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
                base_t = base_map[var.name]
                self.assertTrue(np.array_equal(new_t, base_t))

H
hong 已提交
1353 1354

class TestProgramStateOldSaveSingleModel(unittest.TestCase):
1355 1356 1357 1358
    def set_place(self):
        return fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)

H
hong 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

1380
            place = self.set_place()
H
hong 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
1439
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.io.save_persistables(
                exe, "test_program_2", main_program, filename="model_1")

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
1454
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
            program_state = fluid.load_program_state(
                os.path.join("test_program_2", "model_1"),
                var_list=fluid.io.get_program_persistable_vars(main_program))
            fluid.set_program_state(main_program, program_state)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            with self.assertRaises(ValueError):
                fluid.load_program_state(
                    os.path.join("test_program_2", "model_1"))

            with self.assertRaises(TypeError):
                fluid.load_program_state(
                    os.path.join("test_program_2", "model_1"),
                    var_list=["str"])

            with self.assertRaises(RuntimeError):
                fluid.load_program_state(
                    os.path.join("test_program_2", "model_1"),
                    var_list=[
                        main_program.global_block().create_var(
                            name="fake_var_name", persistable=True)
                    ])


W
WeiXin 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
class TestStaticSaveLoadPickle(unittest.TestCase):
    def test_pickle_protocol(self):
        # enable static mode
        paddle.enable_static()

        with new_program_scope():
            # create network
            x = paddle.static.data(
                name="static_save_load_large_x",
                shape=[None, 10],
                dtype='float32')
            z = paddle.static.nn.fc(x, 10, bias_attr=False)
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()

            base_map = {}
            for var in prog.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
                    # make sure all the paramerter or optimizer var have been update
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            path = os.path.join("test_static_save_load_pickle",
                                "pickle_protocol")

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 2.0)

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 1)

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 5)

            protocols = [2, ]
            if sys.version_info.major >= 3 and sys.version_info.minor >= 4:
                protocols += [3, 4]
            for protocol in protocols:
                paddle.fluid.save(prog, path, protocol)
                # set var to zero
                for var in prog.list_vars():
                    if isinstance(var, framework.Parameter) or var.persistable:
                        ten = fluid.global_scope().find_var(
                            var.name).get_tensor()
                        ten.set(np.zeros_like(np.array(ten)), place)

                        new_t = np.array(fluid.global_scope().find_var(var.name)
                                         .get_tensor())
                        self.assertTrue(np.sum(np.abs(new_t)) == 0)

                paddle.fluid.load(prog, path)

                for var in prog.list_vars():
                    if isinstance(var, framework.Parameter) or var.persistable:
                        new_t = np.array(fluid.global_scope().find_var(var.name)
                                         .get_tensor())
                        base_t = base_map[var.name]
                        self.assertTrue(np.array_equal(new_t, base_t))


H
hong 已提交
1552
if __name__ == '__main__':
1553
    paddle.enable_static()
H
hong 已提交
1554
    unittest.main()