test_elementwise_max_op.py 7.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

F
fengjiayi 已提交
17 18
import unittest
import numpy as np
19 20 21 22
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
import os
import re
import paddle.fluid.core as core
23
import paddle
F
fengjiayi 已提交
24 25 26


class TestElementwiseOp(OpTest):
27

F
fengjiayi 已提交
28 29
    def setUp(self):
        self.op_type = "elementwise_max"
30
        self.python_api = paddle.maximum
F
fengjiayi 已提交
31 32 33
        # If x and y have the same value, the max() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
34 35 36
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
37 38 39 40
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
41 42 43 44
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
F
fengjiayi 已提交
45 46

    def test_check_grad_normal(self):
47 48 49 50
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
fengjiayi 已提交
51 52

    def test_check_grad_ingore_x(self):
53 54 55 56
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set("X"))
F
fengjiayi 已提交
57 58

    def test_check_grad_ingore_y(self):
59 60 61 62
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set('Y'))
F
fengjiayi 已提交
63 64


65 66 67 68
@unittest.skipIf(
    core.is_compiled_with_cuda() and core.cudnn_version() < 8100,
    "run test when gpu is availble and the minimum cudnn version is 8.1.0.")
class TestElementwiseBF16Op(OpTest):
69

70 71
    def setUp(self):
        self.op_type = "elementwise_max"
72
        self.python_api = paddle.maximum
73 74 75 76 77 78 79 80 81 82 83 84 85 86
        self.dtype = np.uint16
        # If x and y have the same value, the max() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        sgn = np.random.choice([-1, 1], [13, 17]).astype(np.float32)
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.inputs = {
            'X': convert_float_to_uint16(x),
            'Y': convert_float_to_uint16(y)
        }
        self.outputs = {'Out': convert_float_to_uint16(np.maximum(x, y))}

    def test_check_output(self):
87 88 89 90
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
91 92

    def test_check_grad_normal(self):
93 94 95 96
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
97 98 99 100 101 102 103 104

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


105 106
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
107
class TestElementwiseMaxOp_scalar(TestElementwiseOp):
108

109 110
    def setUp(self):
        self.op_type = "elementwise_max"
111
        self.python_api = paddle.maximum
112 113
        x = np.random.random_integers(-5, 5, [2, 3, 20]).astype("float64")
        y = np.array([0.5]).astype("float64")
114 115 116 117
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
118
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
119

F
fengjiayi 已提交
120 121
    def setUp(self):
        self.op_type = "elementwise_max"
122
        self.python_api = paddle.maximum
123 124 125
        x = np.random.random((100, )).astype("float64")
        sgn = np.random.choice([-1, 1], (100, )).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100, )).astype("float64")
F
fengjiayi 已提交
126 127 128 129 130
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
131

F
fengjiayi 已提交
132 133
    def setUp(self):
        self.op_type = "elementwise_max"
134
        self.python_api = paddle.maximum
135 136
        x = np.random.uniform(0.5, 1, (100, 5, 2)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
137
        y = x[:, 0, 0] + sgn * \
138
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
139 140 141 142
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
143 144
            'Out': np.maximum(self.inputs['X'],
                              self.inputs['Y'].reshape(100, 1, 1))
F
fengjiayi 已提交
145 146 147 148
        }


class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
149

F
fengjiayi 已提交
150 151
    def setUp(self):
        self.op_type = "elementwise_max"
152
        self.python_api = paddle.maximum
153 154
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
155
        y = x[0, :, 0] + sgn * \
156
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
157 158 159 160
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
161 162
            'Out': np.maximum(self.inputs['X'],
                              self.inputs['Y'].reshape(1, 100, 1))
F
fengjiayi 已提交
163 164 165 166
        }


class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
167

F
fengjiayi 已提交
168 169
    def setUp(self):
        self.op_type = "elementwise_max"
170
        self.python_api = paddle.maximum
171 172
        x = np.random.uniform(0.5, 1, (1, 3, 100)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
173
        y = x[0, 0, :] + sgn * \
174
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
175 176 177
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
178 179
            'Out': np.maximum(self.inputs['X'],
                              self.inputs['Y'].reshape(1, 1, 100))
F
fengjiayi 已提交
180 181 182 183
        }


class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
184

F
fengjiayi 已提交
185 186
    def setUp(self):
        self.op_type = "elementwise_max"
187
        self.python_api = paddle.maximum
188 189
        x = np.random.uniform(0.5, 1, (2, 50, 2, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (50, 2)).astype(np.float64)
F
fengjiayi 已提交
190
        y = x[0, :, :, 0] + sgn * \
191
            np.random.uniform(1, 2, (50, 2)).astype(np.float64)
F
fengjiayi 已提交
192 193 194 195 196
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
197
            np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 50, 2, 1))
F
fengjiayi 已提交
198 199 200
        }


201
class TestElementwiseMaxOp_broadcast_4(TestElementwiseOp):
202

203 204
    def setUp(self):
        self.op_type = "elementwise_max"
205
        self.python_api = paddle.maximum
206 207
        x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 3, 1, 5)).astype(np.float64)
208
        y = x + sgn * \
209
            np.random.uniform(1, 2, (2, 3, 1, 5)).astype(np.float64)
210 211 212 213 214
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}


F
fengjiayi 已提交
215 216
if __name__ == '__main__':
    unittest.main()