api.cpp 13.3 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "api.h"
H
hanbuhe 已提交
16 17
#include <fcntl.h>
#include <sys/ioctl.h>
18
#include <unistd.h>
H
hanbuhe 已提交
19
#include <algorithm>
20
#include <memory>
Z
zhangyang 已提交
21 22 23
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
H
hanbuhe 已提交
24

Z
zhangyang 已提交
25 26
#define FPGA_TEST_MODE

Z
zhangyang 已提交
27
namespace paddle_mobile {
H
hanbuhe 已提交
28 29 30 31 32
namespace fpga {

static int fd = -1;
static const char *device_path = "/dev/fpgadrv0";

H
hanbuhe 已提交
33
static inline int do_ioctl(int req, const void *arg) {
H
hanbuhe 已提交
34
#ifdef PADDLE_MOBILE_OS_LINUX
35
  return ioctl(fd, req, (unsigned int64_t)arg);
H
hanbuhe 已提交
36 37 38
#else
  return -1;
#endif
Z
zhangyang 已提交
39
}
H
hanbuhe 已提交
40 41 42 43 44 45 46 47 48 49

int open_device() {
  if (fd == -1) {
    fd = open(device_path, O_RDWR);
  }
  return fd;
}

// memory management;
void *fpga_malloc(size_t size) {
50
  DLOG << size << " bytes allocated";
H
hanbuhe 已提交
51
#ifdef PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
52 53
  return reinterpret_cast<void *>(
      mmap64(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
H
hanbuhe 已提交
54
#else
55
  return malloc(size);
H
hanbuhe 已提交
56
#endif
H
hanbuhe 已提交
57 58
}

59 60 61 62 63 64 65
void fpga_free(void *ptr) {
#ifdef PADDLE_MOBILE_OS_LINUX
  munmap(ptr, 0);
#else
  free(ptr);
#endif
}
H
hanbuhe 已提交
66 67 68 69 70

void fpga_copy(void *dest, const void *src, size_t num) {
  memcpy(dest, src, num);
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84
int fpga_flush(void *address, size_t size) {
  struct MemoryCacheArgs args;
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_FLUSH, &args);
}

int fpga_invalidate(void *address, size_t size) {
  struct MemoryCacheArgs args;
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_INVAL, &args);
}

Z
zhangyang 已提交
85
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
Z
zhangyang 已提交
86
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*DLOG << "   relu_enabled:" << args.relu_enabled
     << "   sb_address:" << args.sb_address
     << "   filter_address:" << args.filter_address
     << "   filter_num:" << args.filter_num
     << "   group_num:" << args.group_num;
DLOG << "   image_address:" << args.image.address
     << "   image_scale_address:" << args.image.scale_address
     << "   image_channels:" << args.image.channels
     << "   image_height:" << args.image.height
     << "   image_width:" << args.image.width
     << "   pad_height:" << args.image.pad_height
     << "   pad_width:" << args.image.pad_width;
DLOG << "   kernel_height:" << args.kernel.height
     << "   kernel_width:" << args.kernel.width
     << "   stride_h:" << args.kernel.stride_h
     << "   stride_w:" << args.kernel.stride_w;
DLOG << "   out_address:" << args.output.address
     << "   out_scale_address:" << args.output.scale_address;*/
Z
zhangyang 已提交
105
#endif
Z
zhangyang 已提交
106 107 108 109
  int split_num = args.split_num;
  for (int i = 0; i < split_num; i++) {
    do_ioctl(IOCTL_CONFIG_CONV, &args.conv_args[i]);
  }
Z
zhangyang 已提交
110

Z
zhangyang 已提交
111 112 113
  if (split_num > 1) {
    ComputeFPGAConcat(args.concat_arg);
  }
H
hanbuhe 已提交
114
}
Z
zhangyang 已提交
115

H
hanbuhe 已提交
116
int ComputeFpgaPool(const struct PoolingArgs &args) {
Z
zhangyang 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#ifdef FPGA_TEST_MODE
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
133
  return do_ioctl(IOCTL_CONFIG_POOLING, &args);
H
hanbuhe 已提交
134
}
Z
zhangyang 已提交
135

H
hanbuhe 已提交
136
int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
Z
zhangyang 已提交
137 138 139 140 141 142 143 144 145 146 147
#ifdef FPGA_TEST_MODE
  DLOG << "   relu_enabled:" << args.relu_enabled << "   const0:" << args.const0
       << "   const1:" << args.const1;
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
Z
zhangyang 已提交
148
       << "   image1_scale_address:" << args.image1.scale_address
Z
zhangyang 已提交
149 150 151 152 153 154 155 156 157
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
158 159 160
  return do_ioctl(IOCTL_CONFIG_EW, &args);
}
int PerformBypass(const struct BypassArgs &args) {
Z
zhangyang 已提交
161
#ifdef FPGA_TEST_MODE
H
hanbuhe 已提交
162 163
  DLOG << "   input_type:" << args.input_data_type
       << "   input_layout_type:" << args.input_layout_type;
Z
zhangyang 已提交
164 165 166 167 168 169 170 171 172 173 174
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
175
  return do_ioctl(IOCTL_CONFIG_BYPASS, &args);
H
hanbuhe 已提交
176
}
Z
zhangyang 已提交
177

Z
zhangyang 已提交
178 179 180 181 182 183 184
int ComputeFPGAConcat(const struct ConcatArgs &args) {
  image::concat_images(args.images_in, args.scales_in, args.image_out,
                       args.scale_out, args.image_num, args.channel_num,
                       args.height, args.width);
  return 0;
}

Z
zhangyang 已提交
185 186
int get_align_image_cw(int cw) { return align_to_x(cw, IMAGE_ALIGNMENT); }

Z
zhangyang 已提交
187 188
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
189
  auto channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
190
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
191 192 193 194 195 196 197
  size_t memory_size = channel * height * width * sizeof(float);
  float *new_data = (float *)fpga_malloc(memory_size);
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

Z
zhangyang 已提交
198
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
199
  auto dims = ofm_tensor->dims();
200 201 202 203 204 205 206 207 208 209 210 211 212
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
213 214
}

Z
zhangyang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

Z
zhangyang 已提交
232 233 234 235
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
236 237 238

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
239 240
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
241 242 243 244
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

245
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
246
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
247 248
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
249 250 251 252
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
253 254 255 256 257 258 259 260
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

int get_aligned_filter_num(int num) {
  return align_to_x(num, FILTER_NUM_ALIGNMENT);
}

Z
zhangyang 已提交
261 262
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
Z
zhangyang 已提交
263
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
264
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
265
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
266
  size_t memory_size = num * channel * height * width * sizeof(float);
Z
zhangyang 已提交
267
  auto new_data = (float *)fpga_malloc(memory_size);
Z
zhangyang 已提交
268 269 270 271 272 273 274 275 276 277 278 279
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
  auto ddim = framework::make_ddim({-1, sum_channel, height, width});
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

294 295 296 297 298 299
void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
                   framework::Tensor *out, framework::Tensor *filter,
                   bool relu_enabled, int group_num, int stride_h, int stride_w,
                   int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
300
  auto out_ptr = out->data<float>();
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

  arg->group_num = (uint32_t)group_num;
  arg->split_num = (uint32_t)fpga::get_plit_num(filter);
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
  arg->conv_args = (fpga::ConvArgs *)fpga::fpga_malloc(arg->split_num *
                                                       sizeof(fpga::ConvArgs));

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)filter->dims()[2];
  arg->concat_arg.width = (uint32_t)filter->dims()[3];

  int n = arg->split_num;
  arg->concat_arg.images_in = (half **)fpga::fpga_malloc(n * sizeof(int *));
  arg->concat_arg.scales_in = (float **)fpga::fpga_malloc(n * sizeof(float *));
  arg->concat_arg.channel_num =
      (uint32_t *)fpga::fpga_malloc(n * sizeof(uint32_t));
  arg->concat_arg.image_out = out_ptr;

Z
zhangyang 已提交
323
  auto channel = (int)out->dims()[1];
324
  int filter_num_per_div = fpga::get_filter_num_per_div(filter, group_num);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  for (int i = 0; i < n; i++) {
    arg->conv_args[i].relu_enabled = relu_enabled;
    arg->conv_args[i].group_num = (uint32_t)group_num;
    arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_args[i].image.address = input_ptr;
    arg->conv_args[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.scale_address = input->scale;
    arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_args[i].image.pad_width = (uint32_t)padding_w;
342 343 344 345
    arg->conv_args[i].filter_scale_address = filter->scale;
    arg->conv_args[i].filter_address =
        &((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
    arg->conv_args[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
346 347
    arg->conv_args[i].filter_num =
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
348 349
                                    channel - (n - 1) * filter_num_per_div)
                              : filter_num_per_div);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

    if (n > 1) {
      arg->conv_args[i].output.scale_address =
          (float *)fpga::fpga_malloc(2 * sizeof(float));
      arg->conv_args[i].output.address =
          fpga::fpga_malloc(input->dims()[2] * input->dims()[3] *
                            arg->conv_args[i].filter_num * sizeof(half));
    }

    else {
      arg->conv_args[i].output.scale_address = out->scale;
      arg->conv_args[i].output.address = out_ptr;
    }

    arg->concat_arg.images_in[i] = (half *)arg->conv_args[i].output.address;
    arg->concat_arg.scales_in[i] = (float *)arg->conv_args[i].sb_address;
    arg->concat_arg.channel_num[i] = arg->conv_args[i].filter_num;
  }
}

H
hanbuhe 已提交
370
}  // namespace fpga
Z
zhangyang 已提交
371
}  // namespace paddle_mobile