api.cpp 12.4 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "api.h"
H
hanbuhe 已提交
16 17 18
#include <fcntl.h>
#include <sys/ioctl.h>
#include <algorithm>
19
#include <memory>
Z
zhangyang 已提交
20 21 22
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
H
hanbuhe 已提交
23

Z
zhangyang 已提交
24 25
#define FPGA_TEST_MODE

Z
zhangyang 已提交
26
namespace paddle_mobile {
H
hanbuhe 已提交
27 28 29 30 31
namespace fpga {

static int fd = -1;
static const char *device_path = "/dev/fpgadrv0";

H
hanbuhe 已提交
32
static inline int do_ioctl(int req, const void *arg) {
H
hanbuhe 已提交
33
#ifdef PADDLE_MOBILE_OS_LINUX
H
hanbuhe 已提交
34
  return ioctl(req, (unsigned int64_t)arg);
H
hanbuhe 已提交
35 36 37
#else
  return -1;
#endif
Z
zhangyang 已提交
38
}
H
hanbuhe 已提交
39 40 41 42 43 44 45 46 47 48

int open_device() {
  if (fd == -1) {
    fd = open(device_path, O_RDWR);
  }
  return fd;
}

// memory management;
void *fpga_malloc(size_t size) {
49
  DLOG << size << " bytes allocated";
H
hanbuhe 已提交
50
#ifdef PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
51 52
  return reinterpret_cast<void *>(
      mmap64(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
H
hanbuhe 已提交
53
#else
54
  return malloc(size);
H
hanbuhe 已提交
55
#endif
H
hanbuhe 已提交
56 57
}

58 59 60 61 62 63 64
void fpga_free(void *ptr) {
#ifdef PADDLE_MOBILE_OS_LINUX
  munmap(ptr, 0);
#else
  free(ptr);
#endif
}
H
hanbuhe 已提交
65 66 67 68 69

void fpga_copy(void *dest, const void *src, size_t num) {
  memcpy(dest, src, num);
}

Z
zhangyang 已提交
70
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
Z
zhangyang 已提交
71
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/*DLOG << "   relu_enabled:" << args.relu_enabled
     << "   sb_address:" << args.sb_address
     << "   filter_address:" << args.filter_address
     << "   filter_num:" << args.filter_num
     << "   group_num:" << args.group_num;
DLOG << "   image_address:" << args.image.address
     << "   image_scale_address:" << args.image.scale_address
     << "   image_channels:" << args.image.channels
     << "   image_height:" << args.image.height
     << "   image_width:" << args.image.width
     << "   pad_height:" << args.image.pad_height
     << "   pad_width:" << args.image.pad_width;
DLOG << "   kernel_height:" << args.kernel.height
     << "   kernel_width:" << args.kernel.width
     << "   stride_h:" << args.kernel.stride_h
     << "   stride_w:" << args.kernel.stride_w;
DLOG << "   out_address:" << args.output.address
     << "   out_scale_address:" << args.output.scale_address;*/
Z
zhangyang 已提交
90
#endif
Z
zhangyang 已提交
91 92 93 94
  int split_num = args.split_num;
  for (int i = 0; i < split_num; i++) {
    do_ioctl(IOCTL_CONFIG_CONV, &args.conv_args[i]);
  }
Z
zhangyang 已提交
95

Z
zhangyang 已提交
96 97 98
  if (split_num > 1) {
    ComputeFPGAConcat(args.concat_arg);
  }
H
hanbuhe 已提交
99
}
Z
zhangyang 已提交
100

H
hanbuhe 已提交
101
int ComputeFpgaPool(const struct PoolingArgs &args) {
Z
zhangyang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
#ifdef FPGA_TEST_MODE
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
118
  return do_ioctl(IOCTL_CONFIG_POOLING, &args);
H
hanbuhe 已提交
119
}
Z
zhangyang 已提交
120

H
hanbuhe 已提交
121
int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
Z
zhangyang 已提交
122 123 124 125 126 127 128 129 130 131 132
#ifdef FPGA_TEST_MODE
  DLOG << "   relu_enabled:" << args.relu_enabled << "   const0:" << args.const0
       << "   const1:" << args.const1;
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
Z
zhangyang 已提交
133
       << "   image1_scale_address:" << args.image1.scale_address
Z
zhangyang 已提交
134 135 136 137 138 139 140 141 142
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
143 144 145
  return do_ioctl(IOCTL_CONFIG_EW, &args);
}
int PerformBypass(const struct BypassArgs &args) {
Z
zhangyang 已提交
146
#ifdef FPGA_TEST_MODE
H
hanbuhe 已提交
147 148
  DLOG << "   input_type:" << args.input_data_type
       << "   input_layout_type:" << args.input_layout_type;
Z
zhangyang 已提交
149 150 151 152 153 154 155 156 157 158 159
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
160
  return do_ioctl(IOCTL_CONFIG_BYPASS, &args);
H
hanbuhe 已提交
161
}
Z
zhangyang 已提交
162

Z
zhangyang 已提交
163 164 165 166 167 168 169
int ComputeFPGAConcat(const struct ConcatArgs &args) {
  image::concat_images(args.images_in, args.scales_in, args.image_out,
                       args.scale_out, args.image_num, args.channel_num,
                       args.height, args.width);
  return 0;
}

Z
zhangyang 已提交
170 171
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
172
  auto channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
173 174 175 176 177 178 179 180 181 182
  auto data_ptr = image_tensor->mutable_data<float>();
  size_t memory_size = channel * height * width * sizeof(float);
  float *new_data = (float *)fpga_malloc(memory_size);
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

void format_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
183 184 185 186 187 188 189 190 191 192 193 194 195
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
196 197
}

Z
zhangyang 已提交
198 199 200 201
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
202 203 204

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
205 206
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
207 208 209 210
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

211
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
212
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
213 214
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
215 216 217 218
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
219 220 221 222 223 224 225 226
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

int get_aligned_filter_num(int num) {
  return align_to_x(num, FILTER_NUM_ALIGNMENT);
}

Z
zhangyang 已提交
227 228
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
Z
zhangyang 已提交
229
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
230
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
231 232
  auto data_ptr = filter_tensor->mutable_data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
Z
zhangyang 已提交
233
  auto new_data = (float *)fpga_malloc(memory_size);
Z
zhangyang 已提交
234 235 236 237 238 239 240 241 242 243 244 245
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
  auto ddim = framework::make_ddim({-1, sum_channel, height, width});
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
                   framework::Tensor *out, framework::Tensor *filter,
                   bool relu_enabled, int group_num, int stride_h, int stride_w,
                   int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
  auto out_ptr = out->mutable_data<float>();

  arg->group_num = (uint32_t)group_num;
  arg->split_num = (uint32_t)fpga::get_plit_num(filter);
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
  arg->conv_args = (fpga::ConvArgs *)fpga::fpga_malloc(arg->split_num *
                                                       sizeof(fpga::ConvArgs));

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)filter->dims()[2];
  arg->concat_arg.width = (uint32_t)filter->dims()[3];

  int n = arg->split_num;
  arg->concat_arg.images_in = (half **)fpga::fpga_malloc(n * sizeof(int *));
  arg->concat_arg.scales_in = (float **)fpga::fpga_malloc(n * sizeof(float *));
  arg->concat_arg.channel_num =
      (uint32_t *)fpga::fpga_malloc(n * sizeof(uint32_t));
  arg->concat_arg.image_out = out_ptr;

  const int channel = (int)out->dims()[1];
290
  int filter_num_per_div = fpga::get_filter_num_per_div(filter, group_num);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  for (int i = 0; i < n; i++) {
    arg->conv_args[i].relu_enabled = relu_enabled;
    arg->conv_args[i].group_num = (uint32_t)group_num;
    arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_args[i].image.address = input_ptr;
    arg->conv_args[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.scale_address = input->scale;
    arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_args[i].image.pad_width = (uint32_t)padding_w;
308 309 310 311
    arg->conv_args[i].filter_scale_address = filter->scale;
    arg->conv_args[i].filter_address =
        &((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
    arg->conv_args[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
312 313
    arg->conv_args[i].filter_num =
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
314 315
                                    channel - (n - 1) * filter_num_per_div)
                              : filter_num_per_div);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

    if (n > 1) {
      arg->conv_args[i].output.scale_address =
          (float *)fpga::fpga_malloc(2 * sizeof(float));
      arg->conv_args[i].output.address =
          fpga::fpga_malloc(input->dims()[2] * input->dims()[3] *
                            arg->conv_args[i].filter_num * sizeof(half));
    }

    else {
      arg->conv_args[i].output.scale_address = out->scale;
      arg->conv_args[i].output.address = out_ptr;
    }

    arg->concat_arg.images_in[i] = (half *)arg->conv_args[i].output.address;
    arg->concat_arg.scales_in[i] = (float *)arg->conv_args[i].sb_address;
    arg->concat_arg.channel_num[i] = arg->conv_args[i].filter_num;
  }
}

H
hanbuhe 已提交
336
}  // namespace fpga
Z
zhangyang 已提交
337
}  // namespace paddle_mobile