api.cpp 13.3 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "api.h"
H
hanbuhe 已提交
16 17 18
#include <fcntl.h>
#include <sys/ioctl.h>
#include <algorithm>
19
#include <memory>
Z
zhangyang 已提交
20 21 22
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
H
hanbuhe 已提交
23

Z
zhangyang 已提交
24 25
#define FPGA_TEST_MODE

Z
zhangyang 已提交
26
namespace paddle_mobile {
H
hanbuhe 已提交
27 28 29 30 31
namespace fpga {

static int fd = -1;
static const char *device_path = "/dev/fpgadrv0";

H
hanbuhe 已提交
32
static inline int do_ioctl(int req, const void *arg) {
H
hanbuhe 已提交
33
#ifdef PADDLE_MOBILE_OS_LINUX
H
hanbuhe 已提交
34
  return ioctl(req, (unsigned int64_t)arg);
H
hanbuhe 已提交
35 36 37
#else
  return -1;
#endif
Z
zhangyang 已提交
38
}
H
hanbuhe 已提交
39 40 41 42 43 44 45 46 47 48

int open_device() {
  if (fd == -1) {
    fd = open(device_path, O_RDWR);
  }
  return fd;
}

// memory management;
void *fpga_malloc(size_t size) {
49
  DLOG << size << " bytes allocated";
H
hanbuhe 已提交
50
#ifdef PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
51 52
  return reinterpret_cast<void *>(
      mmap64(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
H
hanbuhe 已提交
53
#else
54
  return malloc(size);
H
hanbuhe 已提交
55
#endif
H
hanbuhe 已提交
56 57
}

58 59 60 61 62 63 64
void fpga_free(void *ptr) {
#ifdef PADDLE_MOBILE_OS_LINUX
  munmap(ptr, 0);
#else
  free(ptr);
#endif
}
H
hanbuhe 已提交
65 66 67 68 69

void fpga_copy(void *dest, const void *src, size_t num) {
  memcpy(dest, src, num);
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83
int fpga_flush(void *address, size_t size) {
  struct MemoryCacheArgs args;
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_FLUSH, &args);
}

int fpga_invalidate(void *address, size_t size) {
  struct MemoryCacheArgs args;
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_INVAL, &args);
}

Z
zhangyang 已提交
84
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
Z
zhangyang 已提交
85
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*DLOG << "   relu_enabled:" << args.relu_enabled
     << "   sb_address:" << args.sb_address
     << "   filter_address:" << args.filter_address
     << "   filter_num:" << args.filter_num
     << "   group_num:" << args.group_num;
DLOG << "   image_address:" << args.image.address
     << "   image_scale_address:" << args.image.scale_address
     << "   image_channels:" << args.image.channels
     << "   image_height:" << args.image.height
     << "   image_width:" << args.image.width
     << "   pad_height:" << args.image.pad_height
     << "   pad_width:" << args.image.pad_width;
DLOG << "   kernel_height:" << args.kernel.height
     << "   kernel_width:" << args.kernel.width
     << "   stride_h:" << args.kernel.stride_h
     << "   stride_w:" << args.kernel.stride_w;
DLOG << "   out_address:" << args.output.address
     << "   out_scale_address:" << args.output.scale_address;*/
Z
zhangyang 已提交
104
#endif
Z
zhangyang 已提交
105 106 107 108
  int split_num = args.split_num;
  for (int i = 0; i < split_num; i++) {
    do_ioctl(IOCTL_CONFIG_CONV, &args.conv_args[i]);
  }
Z
zhangyang 已提交
109

Z
zhangyang 已提交
110 111 112
  if (split_num > 1) {
    ComputeFPGAConcat(args.concat_arg);
  }
H
hanbuhe 已提交
113
}
Z
zhangyang 已提交
114

H
hanbuhe 已提交
115
int ComputeFpgaPool(const struct PoolingArgs &args) {
Z
zhangyang 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
#ifdef FPGA_TEST_MODE
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
132
  return do_ioctl(IOCTL_CONFIG_POOLING, &args);
H
hanbuhe 已提交
133
}
Z
zhangyang 已提交
134

H
hanbuhe 已提交
135
int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
Z
zhangyang 已提交
136 137 138 139 140 141 142 143 144 145 146
#ifdef FPGA_TEST_MODE
  DLOG << "   relu_enabled:" << args.relu_enabled << "   const0:" << args.const0
       << "   const1:" << args.const1;
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
Z
zhangyang 已提交
147
       << "   image1_scale_address:" << args.image1.scale_address
Z
zhangyang 已提交
148 149 150 151 152 153 154 155 156
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
157 158 159
  return do_ioctl(IOCTL_CONFIG_EW, &args);
}
int PerformBypass(const struct BypassArgs &args) {
Z
zhangyang 已提交
160
#ifdef FPGA_TEST_MODE
H
hanbuhe 已提交
161 162
  DLOG << "   input_type:" << args.input_data_type
       << "   input_layout_type:" << args.input_layout_type;
Z
zhangyang 已提交
163 164 165 166 167 168 169 170 171 172 173
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
174
  return do_ioctl(IOCTL_CONFIG_BYPASS, &args);
H
hanbuhe 已提交
175
}
Z
zhangyang 已提交
176

Z
zhangyang 已提交
177 178 179 180 181 182 183
int ComputeFPGAConcat(const struct ConcatArgs &args) {
  image::concat_images(args.images_in, args.scales_in, args.image_out,
                       args.scale_out, args.image_num, args.channel_num,
                       args.height, args.width);
  return 0;
}

Z
zhangyang 已提交
184 185
int get_align_image_cw(int cw) { return align_to_x(cw, IMAGE_ALIGNMENT); }

Z
zhangyang 已提交
186 187
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
188
  auto channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
189
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
190 191 192 193 194 195 196
  size_t memory_size = channel * height * width * sizeof(float);
  float *new_data = (float *)fpga_malloc(memory_size);
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

Z
zhangyang 已提交
197
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
198
  auto dims = ofm_tensor->dims();
199 200 201 202 203 204 205 206 207 208 209 210 211
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
212 213
}

Z
zhangyang 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

Z
zhangyang 已提交
231 232 233 234
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
235 236 237

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
238 239
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
240 241 242 243
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

244
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
245
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
246 247
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
248 249 250 251
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
252 253 254 255 256 257 258 259
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

int get_aligned_filter_num(int num) {
  return align_to_x(num, FILTER_NUM_ALIGNMENT);
}

Z
zhangyang 已提交
260 261
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
Z
zhangyang 已提交
262
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
263
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
264
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
265
  size_t memory_size = num * channel * height * width * sizeof(float);
Z
zhangyang 已提交
266
  auto new_data = (float *)fpga_malloc(memory_size);
Z
zhangyang 已提交
267 268 269 270 271 272 273 274 275 276 277 278
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
  auto ddim = framework::make_ddim({-1, sum_channel, height, width});
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

293 294 295 296 297 298
void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
                   framework::Tensor *out, framework::Tensor *filter,
                   bool relu_enabled, int group_num, int stride_h, int stride_w,
                   int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
299
  auto out_ptr = out->data<float>();
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

  arg->group_num = (uint32_t)group_num;
  arg->split_num = (uint32_t)fpga::get_plit_num(filter);
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
  arg->conv_args = (fpga::ConvArgs *)fpga::fpga_malloc(arg->split_num *
                                                       sizeof(fpga::ConvArgs));

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)filter->dims()[2];
  arg->concat_arg.width = (uint32_t)filter->dims()[3];

  int n = arg->split_num;
  arg->concat_arg.images_in = (half **)fpga::fpga_malloc(n * sizeof(int *));
  arg->concat_arg.scales_in = (float **)fpga::fpga_malloc(n * sizeof(float *));
  arg->concat_arg.channel_num =
      (uint32_t *)fpga::fpga_malloc(n * sizeof(uint32_t));
  arg->concat_arg.image_out = out_ptr;

Z
zhangyang 已提交
322
  auto channel = (int)out->dims()[1];
323
  int filter_num_per_div = fpga::get_filter_num_per_div(filter, group_num);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  for (int i = 0; i < n; i++) {
    arg->conv_args[i].relu_enabled = relu_enabled;
    arg->conv_args[i].group_num = (uint32_t)group_num;
    arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_args[i].image.address = input_ptr;
    arg->conv_args[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.scale_address = input->scale;
    arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_args[i].image.pad_width = (uint32_t)padding_w;
341 342 343 344
    arg->conv_args[i].filter_scale_address = filter->scale;
    arg->conv_args[i].filter_address =
        &((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
    arg->conv_args[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
345 346
    arg->conv_args[i].filter_num =
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
347 348
                                    channel - (n - 1) * filter_num_per_div)
                              : filter_num_per_div);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

    if (n > 1) {
      arg->conv_args[i].output.scale_address =
          (float *)fpga::fpga_malloc(2 * sizeof(float));
      arg->conv_args[i].output.address =
          fpga::fpga_malloc(input->dims()[2] * input->dims()[3] *
                            arg->conv_args[i].filter_num * sizeof(half));
    }

    else {
      arg->conv_args[i].output.scale_address = out->scale;
      arg->conv_args[i].output.address = out_ptr;
    }

    arg->concat_arg.images_in[i] = (half *)arg->conv_args[i].output.address;
    arg->concat_arg.scales_in[i] = (float *)arg->conv_args[i].sb_address;
    arg->concat_arg.channel_num[i] = arg->conv_args[i].filter_num;
  }
}

H
hanbuhe 已提交
369
}  // namespace fpga
Z
zhangyang 已提交
370
}  // namespace paddle_mobile