graph.h 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <cmath>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
Z
zhaocai 已提交
22

23 24 25
#include "lite/core/op_lite.h"
#include "lite/core/tensor.h"
#include "lite/kernels/mlu/bridges/tensor.h"
Z
zhaocai 已提交
26
#include "lite/utils/env.h"
27

28 29 30
#define PRINT_HW_TIME false

#if PRINT_HW_TIME
31
#include <mutex>  //NOLINT
32 33
#endif

34 35 36 37 38 39 40 41 42
namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

// The Context of the converters which used for converting the ops of subgraph
// to the MLU IR graph
class Graph {
 public:
43 44 45 46 47 48 49
  Graph() {
    CNML_CALL(cnmlCreateFusionOp(&fusion_op_));
#if PRINT_HW_TIME
    CNRT_CALL(cnrtCreateNotifier(&notifier_start_));
    CNRT_CALL(cnrtCreateNotifier(&notifier_end_));
#endif
  }
50 51

  ~Graph() {
J
jackzhang235 已提交
52
    FreeConstData();
53
    CNML_CALL(cnmlDestroyFusionOp(&fusion_op_));
54 55 56 57 58 59 60 61 62 63
#if PRINT_HW_TIME
    CNRT_CALL(cnrtDestroyNotifier(&notifier_start_));
    CNRT_CALL(cnrtDestroyNotifier(&notifier_end_));
    double total_time = 0;
    for (auto& f : time_log_) {
      total_time += f;
    }
    std::cout << "cnml hardware time for " << time_log_.size()
              << " process:" << total_time / time_log_.size() << std::endl;
#endif
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  }

  // Data node
  std::shared_ptr<MLUTensor> AddNode(
      const std::string& name,
      std::vector<int64_t> shape,
      cnmlTensorType_t tensor_type = CNML_TENSOR,
      cnmlDataOrder_t data_order = CNML_NCHW,
      cnmlDataType_t mlu_dtype = CNML_DATA_FLOAT32,
      void* raw_ptr = nullptr);

  std::shared_ptr<MLUTensor> GetNode(const std::string& name) {
    CHECK(HasNode(name)) << "[MLU] Node " << name << " not found.";
    return nodes_.at(name);
  }

  bool HasNode(const std::string& name) {
    return nodes_.find(name) != nodes_.end();
  }

  void AddInput(std::shared_ptr<MLUTensor> tensor) {
    inputs_.push_back(tensor->mlu_tensor());
    input_tensors_.push_back(tensor);
  }

  void AddOutput(std::shared_ptr<MLUTensor> tensor) {
    outputs_.push_back(tensor->mlu_tensor());
    output_tensors_.push_back(tensor);
  }

J
jackzhang235 已提交
94 95 96 97 98 99 100
  std::vector<std::shared_ptr<MLUTensor>>* MutableInputs() {
    return &input_tensors_;
  }

  std::vector<std::shared_ptr<MLUTensor>>* MutableOutputs() {
    return &output_tensors_;
  }
Z
zhaocai 已提交
101 102 103 104 105 106 107 108
  void GenOfflineModel(const std::string& name) {
    cnmlModel_t model;
    std::string filename = name + ".offline.cambricon";
    CNML_CALL(cnmlCreateModel(&model, name.c_str()));
    CNML_CALL(cnmlAddFusionOpToModel(model, fusion_op_, filename.c_str()));
    CNML_CALL(cnmlSaveModel(model, filename.c_str()));
    CNML_CALL(cnmlDestroyModel(model));
  }
109 110 111 112 113 114 115 116 117 118 119 120 121 122
  void FuseOp(cnmlBaseOp_t op) { CNML_CALL(cnmlFuseOp(op, fusion_op_)); }

  void Compile(cnmlCoreVersion_t core_version, int core_number) {
    CNML_CALL(cnmlSetFusionIO(fusion_op_,
                              inputs_.data(),
                              inputs_.size(),
                              outputs_.data(),
                              outputs_.size()));
    CNML_CALL(cnmlSetFusionOpCorenum(fusion_op_, core_number));
    CNML_CALL(cnmlSetFusionOpCoreVersion(fusion_op_, core_version));
    CNML_CALL(cnmlCompileFusionOp_V2(fusion_op_));
  }

  void Compute(cnrtInvokeFuncParam_t forward_param, cnrtQueue_t que) {
J
jackzhang235 已提交
123 124 125 126 127 128 129 130 131
    input_addrs_.resize(input_tensors_.size());
    output_addrs_.resize(output_tensors_.size());
    for (size_t i = 0; i < input_addrs_.size(); ++i) {
      input_addrs_[i] = input_tensors_[i]->mlu_data();
    }
    for (size_t i = 0; i < output_addrs_.size(); ++i) {
      output_addrs_[i] = output_tensors_[i]->mlu_data();
    }

J
jackzhang235 已提交
132 133
#if PRINT_HW_TIME
    thread_local float hw_time;
134 135
    CNRT_CALL(cnrtPlaceNotifier(notifier_start_, que));
#endif
136 137 138 139 140 141 142
    CNML_CALL(cnmlComputeFusionOpForward_V3(fusion_op_,
                                            input_addrs_.data(),
                                            input_addrs_.size(),
                                            output_addrs_.data(),
                                            output_addrs_.size(),
                                            &forward_param,
                                            que));
143 144
#if PRINT_HW_TIME
    CNRT_CALL(cnrtPlaceNotifier(notifier_end_, que));
145
    CNRT_CALL(cnrtSyncQueue(que));
146 147 148 149 150 151
    CNRT_CALL(cnrtNotifierDuration(notifier_start_, notifier_end_, &hw_time));
    hw_time /= 1000.0f;
    DLOG(INFO) << "cnml hardware time " << hw_time << "ms" << std::endl;
    std::lock_guard<std::mutex> lk(time_mut_);
    time_log_.push_back(hw_time);
#endif
152 153
  }

J
jackzhang235 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  template <typename T>
  void* RegisterConstData(size_t len) {
    void* addr = malloc(len * sizeof(T));
    const_data_storage_.push_back(addr);
    return addr;
  }

  void FreeConstData() {
    for (auto& addr : const_data_storage_) {
      free(addr);
    }
  }

  void BindConstRawData(std::string tensor_name,
                        const float* data,
                        size_t len,
                        bool alloc = true) {
    void* alloc_data;
    if (fp_type_ == CNML_DATA_FLOAT32) {
      if (alloc) {
        alloc_data = RegisterConstData<float>(len);
        memcpy(alloc_data, data, len * sizeof(float));
      } else {
        alloc_data = const_cast<void*>(static_cast<const void*>(data));
      }
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(), alloc_data, false));
    } else if (fp_type_ == CNML_DATA_FLOAT16) {
J
jackzhang235 已提交
182
      void* data_fp16 = RegisterConstData<paddle::lite::fluid::float16>(len);
J
jackzhang235 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
      CNRT_CALL(
          cnrtCastDataType(const_cast<void*>(static_cast<const void*>(data)),
                           CNRT_FLOAT32,
                           data_fp16,
                           CNRT_FLOAT16,
                           len,
                           nullptr));
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(), data_fp16, false));
    } else {
      CHECK(0);
    }
  }

J
jackzhang235 已提交
197
  void BindConstData(std::string tensor_name, paddle::lite::Tensor* tensor) {
198 199 200 201 202 203 204 205
    const float* data = tensor->data<float>();
    size_t len = tensor->data_size();
    if (fp_type_ == CNML_DATA_FLOAT32) {
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(),
          const_cast<void*>(static_cast<const void*>(data)),
          false));
    } else if (fp_type_ == CNML_DATA_FLOAT16) {
J
jackzhang235 已提交
206 207 208 209 210 211 212 213
      void* data_fp16 = RegisterConstData<paddle::lite::fluid::float16>(len);
      CNRT_CALL(
          cnrtCastDataType(const_cast<void*>(static_cast<const void*>(data)),
                           CNRT_FLOAT32,
                           data_fp16,
                           CNRT_FLOAT16,
                           len,
                           nullptr));
214 215 216 217 218 219 220 221 222 223 224 225 226
      CNML_CALL(cnmlBindConstData_V2(nodes_[tensor_name]->mlu_tensor(),
                                     static_cast<void*>(data_fp16),
                                     false));
    } else {
      CHECK(0);
    }
  }

  void SetComputingDataType(cnmlBaseOp_t op,
                            cnmlTensor_t tensor,
                            float scale,
                            cnmlDataType_t data_type = CNML_DATA_INT8) {
    cnmlQuantizedParam_t quant_param;
227 228 229 230 231
    int pos = scale2position(scale);
    auto cnml_scale = pow(2, pos) * scale;
    VLOG(5) << "[cnml quantized param] pos: " << pos
            << "\tscale: " << cnml_scale << std::endl;
    CNML_CALL(cnmlCreateQuantizedParam(&quant_param, pos, cnml_scale, 0.0));
232 233 234 235 236
    CNML_CALL(
        cnmlSetOperationComputingDataType(op, tensor, data_type, quant_param));
    CNML_CALL(cnmlDestroyQuantizedParam(&quant_param));
  }

J
jackzhang235 已提交
237 238
  void SetFPType(paddle::lite_api::PrecisionType type) {
    origin_fp_type_ = type;
239
    switch (type) {
J
jackzhang235 已提交
240
      case paddle::lite_api::PrecisionType::kFP16:
241 242
        fp_type_ = CNML_DATA_FLOAT16;
        break;
J
jackzhang235 已提交
243
      case paddle::lite_api::PrecisionType::kFloat:
244 245 246 247 248 249 250 251 252 253 254
        fp_type_ = CNML_DATA_FLOAT32;
        break;
      default:
        CHECK(0);
    }
  }

  cnmlDataType_t FPType() { return fp_type_; }

 private:
  cnmlDataType_t fp_type_{CNML_DATA_FLOAT32};
J
jackzhang235 已提交
255
  paddle::lite_api::PrecisionType origin_fp_type_{PRECISION(kFloat)};
256 257 258 259 260 261 262 263
  std::unordered_map<std::string, std::shared_ptr<MLUTensor>> nodes_;
  std::vector<cnmlTensor_t> inputs_;
  std::vector<cnmlTensor_t> outputs_;
  std::vector<void*> input_addrs_;
  std::vector<void*> output_addrs_;
  std::vector<std::shared_ptr<MLUTensor>> input_tensors_;
  std::vector<std::shared_ptr<MLUTensor>> output_tensors_;
  cnmlFusionOp_t fusion_op_;
J
jackzhang235 已提交
264
  std::vector<void*> const_data_storage_;
265 266 267 268 269
#if PRINT_HW_TIME
  cnrtNotifier_t notifier_start_{}, notifier_end_{};
  std::mutex time_mut_;
  std::vector<float> time_log_;
#endif
270 271 272 273 274 275
};

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle