graph.h 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <cmath>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/tensor.h"
#include "lite/kernels/mlu/bridges/tensor.h"

26 27 28
#define PRINT_HW_TIME false

#if PRINT_HW_TIME
29
#include <mutex>  //NOLINT
30 31
#endif

32 33 34 35 36 37 38 39 40
namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

// The Context of the converters which used for converting the ops of subgraph
// to the MLU IR graph
class Graph {
 public:
41 42 43 44 45 46 47
  Graph() {
    CNML_CALL(cnmlCreateFusionOp(&fusion_op_));
#if PRINT_HW_TIME
    CNRT_CALL(cnrtCreateNotifier(&notifier_start_));
    CNRT_CALL(cnrtCreateNotifier(&notifier_end_));
#endif
  }
48 49

  ~Graph() {
J
jackzhang235 已提交
50
    FreeConstData();
51
    CNML_CALL(cnmlDestroyFusionOp(&fusion_op_));
52 53 54 55 56 57 58 59 60 61
#if PRINT_HW_TIME
    CNRT_CALL(cnrtDestroyNotifier(&notifier_start_));
    CNRT_CALL(cnrtDestroyNotifier(&notifier_end_));
    double total_time = 0;
    for (auto& f : time_log_) {
      total_time += f;
    }
    std::cout << "cnml hardware time for " << time_log_.size()
              << " process:" << total_time / time_log_.size() << std::endl;
#endif
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  }

  // Data node
  std::shared_ptr<MLUTensor> AddNode(
      const std::string& name,
      std::vector<int64_t> shape,
      cnmlTensorType_t tensor_type = CNML_TENSOR,
      cnmlDataOrder_t data_order = CNML_NCHW,
      cnmlDataType_t mlu_dtype = CNML_DATA_FLOAT32,
      void* raw_ptr = nullptr);

  std::shared_ptr<MLUTensor> GetNode(const std::string& name) {
    CHECK(HasNode(name)) << "[MLU] Node " << name << " not found.";
    return nodes_.at(name);
  }

  bool HasNode(const std::string& name) {
    return nodes_.find(name) != nodes_.end();
  }

  void AddInput(std::shared_ptr<MLUTensor> tensor) {
    inputs_.push_back(tensor->mlu_tensor());
    input_tensors_.push_back(tensor);
  }

  void AddOutput(std::shared_ptr<MLUTensor> tensor) {
    outputs_.push_back(tensor->mlu_tensor());
    output_tensors_.push_back(tensor);
  }

J
jackzhang235 已提交
92 93 94 95 96 97 98 99
  std::vector<std::shared_ptr<MLUTensor>>* MutableInputs() {
    return &input_tensors_;
  }

  std::vector<std::shared_ptr<MLUTensor>>* MutableOutputs() {
    return &output_tensors_;
  }

100 101 102 103 104 105 106 107 108 109 110 111 112 113
  void FuseOp(cnmlBaseOp_t op) { CNML_CALL(cnmlFuseOp(op, fusion_op_)); }

  void Compile(cnmlCoreVersion_t core_version, int core_number) {
    CNML_CALL(cnmlSetFusionIO(fusion_op_,
                              inputs_.data(),
                              inputs_.size(),
                              outputs_.data(),
                              outputs_.size()));
    CNML_CALL(cnmlSetFusionOpCorenum(fusion_op_, core_number));
    CNML_CALL(cnmlSetFusionOpCoreVersion(fusion_op_, core_version));
    CNML_CALL(cnmlCompileFusionOp_V2(fusion_op_));
  }

  void Compute(cnrtInvokeFuncParam_t forward_param, cnrtQueue_t que) {
J
jackzhang235 已提交
114 115 116 117 118 119 120 121 122
    input_addrs_.resize(input_tensors_.size());
    output_addrs_.resize(output_tensors_.size());
    for (size_t i = 0; i < input_addrs_.size(); ++i) {
      input_addrs_[i] = input_tensors_[i]->mlu_data();
    }
    for (size_t i = 0; i < output_addrs_.size(); ++i) {
      output_addrs_[i] = output_tensors_[i]->mlu_data();
    }

123
#if PRINT_HW_TIME thread_local float hw_time;
124 125
    CNRT_CALL(cnrtPlaceNotifier(notifier_start_, que));
#endif
126 127 128 129 130 131 132
    CNML_CALL(cnmlComputeFusionOpForward_V3(fusion_op_,
                                            input_addrs_.data(),
                                            input_addrs_.size(),
                                            output_addrs_.data(),
                                            output_addrs_.size(),
                                            &forward_param,
                                            que));
133 134
#if PRINT_HW_TIME
    CNRT_CALL(cnrtPlaceNotifier(notifier_end_, que));
135
    CNRT_CALL(cnrtSyncQueue(que));
136 137 138 139 140 141
    CNRT_CALL(cnrtNotifierDuration(notifier_start_, notifier_end_, &hw_time));
    hw_time /= 1000.0f;
    DLOG(INFO) << "cnml hardware time " << hw_time << "ms" << std::endl;
    std::lock_guard<std::mutex> lk(time_mut_);
    time_log_.push_back(hw_time);
#endif
142 143
  }

J
jackzhang235 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  template <typename T>
  void* RegisterConstData(size_t len) {
    void* addr = malloc(len * sizeof(T));
    const_data_storage_.push_back(addr);
    return addr;
  }

  void FreeConstData() {
    for (auto& addr : const_data_storage_) {
      free(addr);
    }
  }

  void BindConstRawData(std::string tensor_name,
                        const float* data,
                        size_t len,
                        bool alloc = true) {
    void* alloc_data;
    if (fp_type_ == CNML_DATA_FLOAT32) {
      if (alloc) {
        alloc_data = RegisterConstData<float>(len);
        memcpy(alloc_data, data, len * sizeof(float));
      } else {
        alloc_data = const_cast<void*>(static_cast<const void*>(data));
      }
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(), alloc_data, false));
    } else if (fp_type_ == CNML_DATA_FLOAT16) {
J
jackzhang235 已提交
172
      void* data_fp16 = RegisterConstData<paddle::lite::fluid::float16>(len);
J
jackzhang235 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186
      CNRT_CALL(
          cnrtCastDataType(const_cast<void*>(static_cast<const void*>(data)),
                           CNRT_FLOAT32,
                           data_fp16,
                           CNRT_FLOAT16,
                           len,
                           nullptr));
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(), data_fp16, false));
    } else {
      CHECK(0);
    }
  }

J
jackzhang235 已提交
187
  void BindConstData(std::string tensor_name, paddle::lite::Tensor* tensor) {
188 189 190 191 192 193 194 195
    const float* data = tensor->data<float>();
    size_t len = tensor->data_size();
    if (fp_type_ == CNML_DATA_FLOAT32) {
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(),
          const_cast<void*>(static_cast<const void*>(data)),
          false));
    } else if (fp_type_ == CNML_DATA_FLOAT16) {
J
jackzhang235 已提交
196 197 198 199 200 201 202 203
      void* data_fp16 = RegisterConstData<paddle::lite::fluid::float16>(len);
      CNRT_CALL(
          cnrtCastDataType(const_cast<void*>(static_cast<const void*>(data)),
                           CNRT_FLOAT32,
                           data_fp16,
                           CNRT_FLOAT16,
                           len,
                           nullptr));
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
      CNML_CALL(cnmlBindConstData_V2(nodes_[tensor_name]->mlu_tensor(),
                                     static_cast<void*>(data_fp16),
                                     false));
    } else {
      CHECK(0);
    }
  }

  void SetComputingDataType(cnmlBaseOp_t op,
                            cnmlTensor_t tensor,
                            float scale,
                            cnmlDataType_t data_type = CNML_DATA_INT8) {
    cnmlQuantizedParam_t quant_param;
    CNML_CALL(
        cnmlCreateQuantizedParam(&quant_param, scale2position(scale), 1, 0.0));
    CNML_CALL(
        cnmlSetOperationComputingDataType(op, tensor, data_type, quant_param));
    CNML_CALL(cnmlDestroyQuantizedParam(&quant_param));
  }

J
jackzhang235 已提交
224 225
  void SetFPType(paddle::lite_api::PrecisionType type) {
    origin_fp_type_ = type;
226
    switch (type) {
J
jackzhang235 已提交
227
      case paddle::lite_api::PrecisionType::kFP16:
228 229
        fp_type_ = CNML_DATA_FLOAT16;
        break;
J
jackzhang235 已提交
230
      case paddle::lite_api::PrecisionType::kFloat:
231 232 233 234 235 236 237 238 239 240 241
        fp_type_ = CNML_DATA_FLOAT32;
        break;
      default:
        CHECK(0);
    }
  }

  cnmlDataType_t FPType() { return fp_type_; }

 private:
  cnmlDataType_t fp_type_{CNML_DATA_FLOAT32};
J
jackzhang235 已提交
242
  paddle::lite_api::PrecisionType origin_fp_type_{PRECISION(kFloat)};
243 244 245 246 247 248 249 250
  std::unordered_map<std::string, std::shared_ptr<MLUTensor>> nodes_;
  std::vector<cnmlTensor_t> inputs_;
  std::vector<cnmlTensor_t> outputs_;
  std::vector<void*> input_addrs_;
  std::vector<void*> output_addrs_;
  std::vector<std::shared_ptr<MLUTensor>> input_tensors_;
  std::vector<std::shared_ptr<MLUTensor>> output_tensors_;
  cnmlFusionOp_t fusion_op_;
J
jackzhang235 已提交
251
  std::vector<void*> const_data_storage_;
252 253 254 255 256
#if PRINT_HW_TIME
  cnrtNotifier_t notifier_start_{}, notifier_end_{};
  std::mutex time_mut_;
  std::vector<float> time_log_;
#endif
257 258 259 260 261 262
};

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle