graph.h 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <cmath>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/tensor.h"
#include "lite/kernels/mlu/bridges/tensor.h"

26 27 28
#define PRINT_HW_TIME false

#if PRINT_HW_TIME
29
#include <mutex>  //NOLINT
30 31
#endif

32 33 34 35 36 37 38 39 40
namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

// The Context of the converters which used for converting the ops of subgraph
// to the MLU IR graph
class Graph {
 public:
41 42 43 44 45 46 47
  Graph() {
    CNML_CALL(cnmlCreateFusionOp(&fusion_op_));
#if PRINT_HW_TIME
    CNRT_CALL(cnrtCreateNotifier(&notifier_start_));
    CNRT_CALL(cnrtCreateNotifier(&notifier_end_));
#endif
  }
48 49

  ~Graph() {
J
jackzhang235 已提交
50
    FreeConstData();
51
    CNML_CALL(cnmlDestroyFusionOp(&fusion_op_));
52 53 54 55 56 57 58 59 60 61
#if PRINT_HW_TIME
    CNRT_CALL(cnrtDestroyNotifier(&notifier_start_));
    CNRT_CALL(cnrtDestroyNotifier(&notifier_end_));
    double total_time = 0;
    for (auto& f : time_log_) {
      total_time += f;
    }
    std::cout << "cnml hardware time for " << time_log_.size()
              << " process:" << total_time / time_log_.size() << std::endl;
#endif
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  }

  // Data node
  std::shared_ptr<MLUTensor> AddNode(
      const std::string& name,
      std::vector<int64_t> shape,
      cnmlTensorType_t tensor_type = CNML_TENSOR,
      cnmlDataOrder_t data_order = CNML_NCHW,
      cnmlDataType_t mlu_dtype = CNML_DATA_FLOAT32,
      void* raw_ptr = nullptr);

  std::shared_ptr<MLUTensor> GetNode(const std::string& name) {
    CHECK(HasNode(name)) << "[MLU] Node " << name << " not found.";
    return nodes_.at(name);
  }

  bool HasNode(const std::string& name) {
    return nodes_.find(name) != nodes_.end();
  }

  void AddInput(std::shared_ptr<MLUTensor> tensor) {
    inputs_.push_back(tensor->mlu_tensor());
    input_tensors_.push_back(tensor);
  }

  void AddOutput(std::shared_ptr<MLUTensor> tensor) {
    outputs_.push_back(tensor->mlu_tensor());
    output_tensors_.push_back(tensor);
  }

J
jackzhang235 已提交
92 93 94 95 96 97 98 99
  std::vector<std::shared_ptr<MLUTensor>>* MutableInputs() {
    return &input_tensors_;
  }

  std::vector<std::shared_ptr<MLUTensor>>* MutableOutputs() {
    return &output_tensors_;
  }

100 101 102 103 104 105 106 107 108 109 110 111 112 113
  void FuseOp(cnmlBaseOp_t op) { CNML_CALL(cnmlFuseOp(op, fusion_op_)); }

  void Compile(cnmlCoreVersion_t core_version, int core_number) {
    CNML_CALL(cnmlSetFusionIO(fusion_op_,
                              inputs_.data(),
                              inputs_.size(),
                              outputs_.data(),
                              outputs_.size()));
    CNML_CALL(cnmlSetFusionOpCorenum(fusion_op_, core_number));
    CNML_CALL(cnmlSetFusionOpCoreVersion(fusion_op_, core_version));
    CNML_CALL(cnmlCompileFusionOp_V2(fusion_op_));
  }

  void Compute(cnrtInvokeFuncParam_t forward_param, cnrtQueue_t que) {
J
jackzhang235 已提交
114 115 116 117 118 119 120 121 122
    input_addrs_.resize(input_tensors_.size());
    output_addrs_.resize(output_tensors_.size());
    for (size_t i = 0; i < input_addrs_.size(); ++i) {
      input_addrs_[i] = input_tensors_[i]->mlu_data();
    }
    for (size_t i = 0; i < output_addrs_.size(); ++i) {
      output_addrs_[i] = output_tensors_[i]->mlu_data();
    }

J
jackzhang235 已提交
123 124
#if PRINT_HW_TIME
    thread_local float hw_time;
125 126
    CNRT_CALL(cnrtPlaceNotifier(notifier_start_, que));
#endif
127 128 129 130 131 132 133
    CNML_CALL(cnmlComputeFusionOpForward_V3(fusion_op_,
                                            input_addrs_.data(),
                                            input_addrs_.size(),
                                            output_addrs_.data(),
                                            output_addrs_.size(),
                                            &forward_param,
                                            que));
134 135
#if PRINT_HW_TIME
    CNRT_CALL(cnrtPlaceNotifier(notifier_end_, que));
136
    CNRT_CALL(cnrtSyncQueue(que));
137 138 139 140 141 142
    CNRT_CALL(cnrtNotifierDuration(notifier_start_, notifier_end_, &hw_time));
    hw_time /= 1000.0f;
    DLOG(INFO) << "cnml hardware time " << hw_time << "ms" << std::endl;
    std::lock_guard<std::mutex> lk(time_mut_);
    time_log_.push_back(hw_time);
#endif
143 144
  }

J
jackzhang235 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  template <typename T>
  void* RegisterConstData(size_t len) {
    void* addr = malloc(len * sizeof(T));
    const_data_storage_.push_back(addr);
    return addr;
  }

  void FreeConstData() {
    for (auto& addr : const_data_storage_) {
      free(addr);
    }
  }

  void BindConstRawData(std::string tensor_name,
                        const float* data,
                        size_t len,
                        bool alloc = true) {
    void* alloc_data;
    if (fp_type_ == CNML_DATA_FLOAT32) {
      if (alloc) {
        alloc_data = RegisterConstData<float>(len);
        memcpy(alloc_data, data, len * sizeof(float));
      } else {
        alloc_data = const_cast<void*>(static_cast<const void*>(data));
      }
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(), alloc_data, false));
    } else if (fp_type_ == CNML_DATA_FLOAT16) {
J
jackzhang235 已提交
173
      void* data_fp16 = RegisterConstData<paddle::lite::fluid::float16>(len);
J
jackzhang235 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187
      CNRT_CALL(
          cnrtCastDataType(const_cast<void*>(static_cast<const void*>(data)),
                           CNRT_FLOAT32,
                           data_fp16,
                           CNRT_FLOAT16,
                           len,
                           nullptr));
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(), data_fp16, false));
    } else {
      CHECK(0);
    }
  }

J
jackzhang235 已提交
188
  void BindConstData(std::string tensor_name, paddle::lite::Tensor* tensor) {
189 190 191 192 193 194 195 196
    const float* data = tensor->data<float>();
    size_t len = tensor->data_size();
    if (fp_type_ == CNML_DATA_FLOAT32) {
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(),
          const_cast<void*>(static_cast<const void*>(data)),
          false));
    } else if (fp_type_ == CNML_DATA_FLOAT16) {
J
jackzhang235 已提交
197 198 199 200 201 202 203 204
      void* data_fp16 = RegisterConstData<paddle::lite::fluid::float16>(len);
      CNRT_CALL(
          cnrtCastDataType(const_cast<void*>(static_cast<const void*>(data)),
                           CNRT_FLOAT32,
                           data_fp16,
                           CNRT_FLOAT16,
                           len,
                           nullptr));
205 206 207 208 209 210 211 212 213 214 215 216 217
      CNML_CALL(cnmlBindConstData_V2(nodes_[tensor_name]->mlu_tensor(),
                                     static_cast<void*>(data_fp16),
                                     false));
    } else {
      CHECK(0);
    }
  }

  void SetComputingDataType(cnmlBaseOp_t op,
                            cnmlTensor_t tensor,
                            float scale,
                            cnmlDataType_t data_type = CNML_DATA_INT8) {
    cnmlQuantizedParam_t quant_param;
218 219 220 221 222
    int pos = scale2position(scale);
    auto cnml_scale = pow(2, pos) * scale;
    VLOG(5) << "[cnml quantized param] pos: " << pos
            << "\tscale: " << cnml_scale << std::endl;
    CNML_CALL(cnmlCreateQuantizedParam(&quant_param, pos, cnml_scale, 0.0));
223 224 225 226 227
    CNML_CALL(
        cnmlSetOperationComputingDataType(op, tensor, data_type, quant_param));
    CNML_CALL(cnmlDestroyQuantizedParam(&quant_param));
  }

J
jackzhang235 已提交
228 229
  void SetFPType(paddle::lite_api::PrecisionType type) {
    origin_fp_type_ = type;
230
    switch (type) {
J
jackzhang235 已提交
231
      case paddle::lite_api::PrecisionType::kFP16:
232 233
        fp_type_ = CNML_DATA_FLOAT16;
        break;
J
jackzhang235 已提交
234
      case paddle::lite_api::PrecisionType::kFloat:
235 236 237 238 239 240 241 242 243 244 245
        fp_type_ = CNML_DATA_FLOAT32;
        break;
      default:
        CHECK(0);
    }
  }

  cnmlDataType_t FPType() { return fp_type_; }

 private:
  cnmlDataType_t fp_type_{CNML_DATA_FLOAT32};
J
jackzhang235 已提交
246
  paddle::lite_api::PrecisionType origin_fp_type_{PRECISION(kFloat)};
247 248 249 250 251 252 253 254
  std::unordered_map<std::string, std::shared_ptr<MLUTensor>> nodes_;
  std::vector<cnmlTensor_t> inputs_;
  std::vector<cnmlTensor_t> outputs_;
  std::vector<void*> input_addrs_;
  std::vector<void*> output_addrs_;
  std::vector<std::shared_ptr<MLUTensor>> input_tensors_;
  std::vector<std::shared_ptr<MLUTensor>> output_tensors_;
  cnmlFusionOp_t fusion_op_;
J
jackzhang235 已提交
255
  std::vector<void*> const_data_storage_;
256 257 258 259 260
#if PRINT_HW_TIME
  cnrtNotifier_t notifier_start_{}, notifier_end_{};
  std::mutex time_mut_;
  std::vector<float> time_log_;
#endif
261 262 263 264 265 266
};

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle