io.cpp 10.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14 15 16

#include <fstream>

L
liuruilong 已提交
17
#include "common/log.h"
L
liuruilong 已提交
18
#include "framework/framework.pb.h"
L
liuruilong 已提交
19
#include "framework/lod_tensor.h"
L
liuruilong 已提交
20
#include "framework/program/program_desc.h"
L
liuruilong 已提交
21 22 23
#include "framework/scope.h"
#include "framework/tensor.h"
#include "io.h"
L
liuruilong 已提交
24

朔-望's avatar
朔-望 已提交
25 26
namespace paddle_mobile {

朔-望's avatar
朔-望 已提交
27
void ReadBinaryFile(const std::string &filename, std::string *contents) {
28 29 30 31 32 33 34
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  fin.seekg(0, std::ios::end);
  contents->clear();
  contents->resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
朔-望's avatar
朔-望 已提交
35 36 37 38 39
}

template <typename Dtype, Precision P>
void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor,
                               const std::string &file_path) {
40 41
  std::ifstream is(file_path);

朔-望's avatar
朔-望 已提交
42 43
  std::fpos<mbstate_t> pos;
  pos = is.tellg();  // save   current   position
44
  is.seekg(0, std::ios::end);
朔-望's avatar
朔-望 已提交
45
  is.seekg(pos);  // restore   saved   position
46 47 48 49 50 51 52 53 54 55 56 57

  // 1. version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));

  // 2 Lod information
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
朔-望's avatar
朔-望 已提交
58
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
59 60 61
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
朔-望's avatar
朔-望 已提交
62 63
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
朔-望's avatar
朔-望 已提交
64
    }
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    lod[i] = tmp;
  }

  // 3. tensor version
  uint32_t tensor_version;
  is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));

  // 4. tensor desc
  int32_t size;
  is.read(reinterpret_cast<char *>(&size), sizeof(size));
  std::unique_ptr<char[]> buf(new char[size]);
  is.read(reinterpret_cast<char *>(buf.get()), size);

  framework::proto::VarType::TensorDesc desc;
  desc.ParseFromArray(buf.get(), size);

  int memory_size = 1;
朔-望's avatar
朔-望 已提交
82 83
  for (auto l : desc.dims()) {
    memory_size *= l;
84 85 86 87 88 89 90
  }

  std::vector<int64_t> dims;
  dims.reserve(static_cast<size_t>(desc.dims().size()));
  std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
  tensor->Resize(framework::make_ddim(dims));

朔-望's avatar
朔-望 已提交
91
  void *memory = tensor;
92 93
  int type_size = 0;
  switch (desc.data_type()) {
朔-望's avatar
朔-望 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    case framework::proto::VarType::FP16:
      type_size = 2;
      break;
    case framework::proto::VarType::FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::proto::VarType::FP64:
      type_size = 8;
      break;
    case framework::proto::VarType::INT32:
      type_size = 4;
      break;
    case framework::proto::VarType::INT64:
      type_size = 8;
      break;
    case framework::proto::VarType::BOOL:
      type_size = 1;
      break;
    default:
      break;
115 116 117 118
  }

  is.read(static_cast<char *>(memory), memory_size * type_size);
  is.close();
朔-望's avatar
朔-望 已提交
119
}
朔-望's avatar
朔-望 已提交
120 121

template <typename Dtype, Precision P>
朔-望's avatar
朔-望 已提交
122 123
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &dirname) {
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  std::string model_filename = dirname + "/__model__";
  std::string program_desc_str;
  ReadBinaryFile(model_filename, &program_desc_str);
  framework::proto::ProgramDesc program_desc_proto;
  program_desc_proto.ParseFromString(program_desc_str);

  std::shared_ptr<framework::ProgramDesc> originProgramDesc =
      std::make_shared<framework::ProgramDesc>(program_desc_proto);

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

  std::shared_ptr<framework::Scope> scope =
      std::make_shared<framework::Scope>();
  program.scope = scope;

朔-望's avatar
朔-望 已提交
140
  originProgramDesc->Block(0);
141

朔-望's avatar
朔-望 已提交
142
  for (const auto &block : originProgramDesc->Blocks()) {
143 144 145 146 147 148 149
    for (int i = 0; i < block->Vars().size(); ++i) {
      std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
      auto var = scope->Var(var_desc->Name());
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
            var_desc->GetType() != framework::proto::VarType::FETCH_LIST) {
朔-望's avatar
朔-望 已提交
150
          auto tensor = var->GetMutable<framework::LoDTensor>();
151 152
          // to load
          LoadVar(tensor, dirname + "/" + var_desc->Name());
153
        }
154
      } else {
L
liuruilong 已提交
155
        // TODO(codeWorm): some.
156
      }
朔-望's avatar
朔-望 已提交
157
    }
158
  }
159 160

#ifdef PADDLE_MOBILE_DEBUG
朔-望's avatar
朔-望 已提交
161
  for (const auto &block : program_desc_proto.blocks()) {
162 163
    LOG(kLOG_DEBUG) << "block: " << block.idx();
    for (int j = 0; j < block.ops().size(); ++j) {
E
eclipsess 已提交
164 165 166
      //      if (j == 2) {
      //        break;
      //      }
167 168 169 170 171
      framework::proto::OpDesc op = block.ops()[j];
      LOG(kLOG_DEBUG1) << "op: " << op.type();
      for (int m = 0; m < op.inputs_size(); ++m) {
        const framework::proto::OpDesc::Var &var = op.inputs(m);
        LOG(kLOG_DEBUG2) << "input parameter: " << var.parameter();
朔-望's avatar
朔-望 已提交
172 173
        for (const auto &n : var.arguments()) {
          LOG(kLOG_DEBUG3) << "argument - " << n;
174 175 176 177 178 179
        }
      }

      for (int y = 0; y < op.outputs_size(); ++y) {
        const framework::proto::OpDesc::Var &var = op.outputs(y);
        LOG(kLOG_DEBUG2) << "out parameter: " << var.parameter();
朔-望's avatar
朔-望 已提交
180 181
        for (const auto &z : var.arguments()) {
          LOG(kLOG_DEBUG3) << "argument - " << z;
182 183 184
        }
      }

朔-望's avatar
朔-望 已提交
185
      for (const auto &attr : op.attrs()) {
186 187 188
        LOG(kLOG_DEBUG2) << "attr name: " << attr.name();

        switch (attr.type()) {
朔-望's avatar
朔-望 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
          case framework::proto::AttrType::BOOLEAN:
            LOG(kLOG_DEBUG3) << "boolen: " << attr.b();
            break;
          case framework::proto::AttrType::INT:
            LOG(kLOG_DEBUG3) << "int: " << attr.i();
            break;
          case framework::proto::AttrType::FLOAT:
            LOG(kLOG_DEBUG3) << "float: " << attr.f();
          case framework::proto::AttrType::STRING:
            LOG(kLOG_DEBUG3) << "string: " << attr.s();
          case framework::proto::AttrType::BOOLEANS:
            for (int y = 0; y < attr.bools_size(); ++y) {
              LOG(kLOG_DEBUG3) << "bools: " << attr.bools(y);
            }
          case framework::proto::AttrType::LONG:
            LOG(kLOG_DEBUG3) << "long: " << attr.l();
          case framework::proto::AttrType::FLOATS:
            for (int y = 0; y < attr.floats_size(); ++y) {
              LOG(kLOG_DEBUG3) << "floats: " << attr.floats(y);
            }
          case framework::proto::AttrType::INTS:
            for (int y = 0; y < attr.ints_size(); ++y) {
              LOG(kLOG_DEBUG3) << "ints: " << attr.ints(y);
            }
          case framework::proto::AttrType::STRINGS:
            for (int y = 0; y < attr.strings_size(); ++y) {
              LOG(kLOG_DEBUG3) << "strings: " << attr.strings(y);
            }
          case framework::proto::BLOCK:
            break;
219 220 221 222
        }
      }
    }

朔-望's avatar
朔-望 已提交
223
    for (const auto &var : block.vars()) {
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
      if (var.type().type() == framework::proto::VarType::LOD_TENSOR) {
        LOG(kLOG_DEBUG1) << "var name: " << var.name();
        const framework::proto::VarType::TensorDesc &tensor_desc =
            var.type().lod_tensor().tensor();
        LOG(kLOG_DEBUG2) << "in var tensor desc dims size: "
                         << tensor_desc.dims().size();
        for (int l = 0; l < tensor_desc.dims().size(); ++l) {
          LOG(kLOG_DEBUG3) << "var tensor desc dim " << l
                           << " value: " << tensor_desc.dims()[l];
        }
      }

      if (var.persistable() &&
          var.type().type() != framework::proto::VarType::FEED_MINIBATCH &&
          var.type().type() != framework::proto::VarType::FETCH_LIST) {
        std::string file_path = dirname + "/" + var.name();
        std::ifstream is(file_path);
朔-望's avatar
朔-望 已提交
241 242
        std::fpos<mbstate_t> pos;
        pos = is.tellg();  // save   current   position
243
        is.seekg(0, std::ios::end);
朔-望's avatar
朔-望 已提交
244
        is.seekg(pos);  // restore   saved   position
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

        // 1. version
        uint32_t version;
        is.read(reinterpret_cast<char *>(&version), sizeof(version));

        // 2 Lod information
        uint64_t lod_level;
        is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
        for (uint64_t i = 0; i < lod_level; ++i) {
          uint64_t size;
          is.read(reinterpret_cast<char *>(&size), sizeof(size));
          std::vector<size_t> tmp(size / sizeof(size_t));
          is.read(reinterpret_cast<char *>(tmp.data()),
                  static_cast<std::streamsize>(size));
          for (int j = 0; j < tmp.size(); ++j) {
          }
朔-望's avatar
朔-望 已提交
261
        }
262

263 264 265 266 267 268 269 270 271 272 273
        is.read(reinterpret_cast<char *>(&version), sizeof(version));

        int32_t size;
        is.read(reinterpret_cast<char *>(&size), sizeof(size));
        std::unique_ptr<char[]> buf(new char[size]);
        is.read(reinterpret_cast<char *>(buf.get()), size);

        framework::proto::VarType::TensorDesc desc;
        desc.ParseFromArray(buf.get(), size);

        int memory_size = 1;
朔-望's avatar
朔-望 已提交
274 275
        for (long long l : desc.dims()) {
          memory_size *= l;
276
        }
277 278 279

        int type_size = 0;
        switch (desc.data_type()) {
朔-望's avatar
朔-望 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
          case framework::proto::VarType::FP16:
            type_size = 2;
            break;
          case framework::proto::VarType::FP32:
            type_size = 4;
            break;
          case framework::proto::VarType::FP64:
            type_size = 8;
            break;
          case framework::proto::VarType::INT32:
            type_size = 4;
            break;
          case framework::proto::VarType::INT64:
            type_size = 8;
            break;
          case framework::proto::VarType::BOOL:
            type_size = 1;
            break;
          default:
            break;
300 301 302 303 304 305
        }

        void *memory = malloc(memory_size * type_size);
        is.read(static_cast<char *>(memory), memory_size * type_size);
        is.close();
      } else {
L
liuruilong 已提交
306
        // TODO
307
      }
朔-望's avatar
朔-望 已提交
308
    }
309
  }
朔-望's avatar
朔-望 已提交
310 311

#endif
312
  return program;
朔-望's avatar
朔-望 已提交
313
}
朔-望's avatar
朔-望 已提交
314

朔-望's avatar
朔-望 已提交
315
template class Loader<CPU, Precision::FP32>;
朔-望's avatar
朔-望 已提交
316

朔-望's avatar
朔-望 已提交
317
}  // namespace paddle_mobile