io.cpp 14.8 KB
Newer Older
朔-望's avatar
朔-望 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/

#include <fstream>
#include <iostream>

#include "framework/framework.pb.h"
#include "framework/lod_tensor.h"
#include "framework/program_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "io.h"

namespace paddle_mobile {

void ReadBinaryFile(const std::string &filename, std::string *contents) {
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  fin.seekg(0, std::ios::end);
  contents->clear();
  contents->resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
}

template <typename Dtype, Precision P>
void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor,
                               const std::string &file_path) {
  //  std::cout << "  to load " << file_path << std::endl;

  std::ifstream is(file_path);

L
liuruilong 已提交
48
  std::streampos pos = is.tellg(); //   save   current   position
朔-望's avatar
朔-望 已提交
49 50
  is.seekg(0, std::ios::end);
  //  std::cout << "  file length = " << is.tellg() << std::endl;
L
liuruilong 已提交
51
  is.seekg(pos); //   restore   saved   position
朔-望's avatar
朔-望 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  // 1. version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  //  std::cout << "   version: " << version << std::endl;

  // 2 Lod information
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  //  std::cout << "   load level: " << lod_level << std::endl;
  //  std::cout << "   lod info: " << std::endl;
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    for (int j = 0; j < tmp.size(); ++j) {
      //      std::cout << "    lod - " << tmp[j] << std::endl;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
  uint32_t tensor_version;
  is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));
  //  std::cout << "   tensor_version: " << tensor_version << std::endl;

  // 4. tensor desc
  int32_t size;
  is.read(reinterpret_cast<char *>(&size), sizeof(size));
  //  std::cout << "   tensor desc size: " << size << std::endl;
  std::unique_ptr<char[]> buf(new char[size]);
  is.read(reinterpret_cast<char *>(buf.get()), size);

  framework::proto::VarType::TensorDesc desc;
  desc.ParseFromArray(buf.get(), size);

  //  std::cout << "   desc dims size " << desc.dims().size() << std::endl;
  int memory_size = 1;
  for (int l = 0; l < desc.dims().size(); ++l) {
    //    std::cout << "    dim " << l << " value: " << desc.dims()[l] <<
    //    std::endl;
    memory_size *= desc.dims()[l];
  }

  std::vector<int64_t> dims;
  dims.reserve(static_cast<size_t>(desc.dims().size()));
  std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
  tensor->Resize(framework::make_ddim(dims));

  void *memory;
  int type_size = 0;
  //  std::cout << "    desc pre type: ";
  switch (desc.data_type()) {
L
liuruilong 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  case framework::proto::VarType::FP16:
    //      std::cout << "FP16" << std::endl;
    type_size = 2;
    break;
  case framework::proto::VarType::FP32:
    type_size = 4;
    memory = tensor->mutable_data<float>();
    //      std::cout << "FP32" << std::endl;
    break;
  case framework::proto::VarType::FP64:
    type_size = 8;
    //      std::cout << "FP64" << std::endl;
    break;
  case framework::proto::VarType::INT32:
    type_size = 4;
    //      std::cout << "INT32" << std::endl;
    break;
  case framework::proto::VarType::INT64:
    type_size = 8;
    //      std::cout << "INT64" << std::endl;
    break;
  case framework::proto::VarType::BOOL:
    type_size = 1;
    //      std::cout << "BOOL" << std::endl;
    break;
  default:
    break;
    //      std::cout << "    not support" << std::endl;
朔-望's avatar
朔-望 已提交
137 138 139 140 141 142 143 144 145
  }

  //  std::cout << "    malloc size: " << memory_size * type_size << std::endl;
  is.read(static_cast<char *>(memory), memory_size * type_size);
  //  std::cout << "    memory: " << memory << std::endl;
  is.close();
};

template <typename Dtype, Precision P>
L
liuruilong 已提交
146 147
const framework::Program<Dtype, P>
Loader<Dtype, P>::Load(const std::string &dirname) {
朔-望's avatar
朔-望 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  std::string model_filename = dirname + "/__model__";
  std::string program_desc_str;
  ReadBinaryFile(model_filename, &program_desc_str);
  framework::proto::ProgramDesc program_desc_proto;
  program_desc_proto.ParseFromString(program_desc_str);

  std::shared_ptr<framework::ProgramDesc> originProgramDesc =
      std::make_shared<framework::ProgramDesc>(program_desc_proto);

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

  std::shared_ptr<framework::Scope> scope =
      std::make_shared<framework::Scope>();
  program.scope = scope;

  auto block = originProgramDesc->Block(0);

  for (auto block : originProgramDesc->Blocks()) {
    //    std::cout << "for block" << std::endl;
    for (int i = 0; i < block->Vars().size(); ++i) {
      std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
      auto var = scope->Var(var_desc->Name());
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
            var_desc->GetType() != framework::proto::VarType::FETCH_LIST) {
          framework::LoDTensor *tensor =
              var->GetMutable<framework::LoDTensor>();
          // to load
          LoadVar(tensor, dirname + "/" + var_desc->Name());
        }
      } else {
        //        std::cout << "非 lod" << std::endl;
      }
    }
  }

#ifdef PADDLE_MOBILE_DEBUG
  for (int i = 0; i < program_desc_proto.blocks().size(); ++i) {
    framework::proto::BlockDesc block = program_desc_proto.blocks()[i];
    //    std::cout << "block: " << block.idx() << std::endl;
    for (int j = 0; j < block.ops().size(); ++j) {
      framework::proto::OpDesc op = block.ops()[j];

      //      std::cout << " op: " << op.type() << std::endl;
      for (int m = 0; m < op.inputs_size(); ++m) {
        const framework::proto::OpDesc::Var &var = op.inputs(m);
        //        std::cout << "  input parameter: " << var.parameter() <<
        //        std::endl;
        for (int n = 0; n < var.arguments().size(); ++n) {
          //          std::cout << "   argument - " << var.arguments()[n] <<
          //          std::endl;
        }
      }

      for (int y = 0; y < op.outputs_size(); ++y) {
        const framework::proto::OpDesc::Var &var = op.outputs(y);
        //        std::cout << "  output parameter: " << var.parameter() <<
        //        std::endl;
        for (int z = 0; z < var.arguments().size(); ++z) {
          //          std::cout << "   argument - " << var.arguments()[z] <<
          //          std::endl;
        }
      }

      for (int x = 0; x < op.attrs().size(); ++x) {
        const framework::proto::OpDesc_Attr attr = op.attrs()[x];
        //        std::cout << "  attr name: " << attr.name() << std::endl;
        //        std::cout << "  attr type: " << attr.type() << std::endl;

        switch (attr.type()) {
L
liuruilong 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        case framework::proto::AttrType::BOOLEAN:
          //            std::cout << "   boolen: " << attr.b() << std::endl;
          break;
        case framework::proto::AttrType::INT:
          //            std::cout << "   int: " << attr.i() << std::endl;
          break;
        case framework::proto::AttrType::FLOAT:
        //            std::cout << "   float: " << attr.f() << std::endl;
        case framework::proto::AttrType::STRING:
        //            std::cout << "   string: " << attr.s() << std::endl;
        case framework::proto::AttrType::BOOLEANS:
          //                            std::vector<bool>
          //                            bools(attr.bools_size());
          for (int y = 0; y < attr.bools_size(); ++y) {
            //              std::cout << "   bool - " << attr.bools(y) <<
            //              std::endl;
          }
        case framework::proto::AttrType::LONG:
        //            std::cout << "   long: " << attr.l() << std::endl;
        case framework::proto::AttrType::FLOATS:
          for (int y = 0; y < attr.floats_size(); ++y) {
            //              std::cout << "   float - " << y << ": " <<
            //              attr.floats(y)
            //                        << std::endl;
          }
        case framework::proto::AttrType::INTS:
          for (int y = 0; y < attr.ints_size(); ++y) {
            //              std::cout << "   int - " << y << ": " <<
            //              attr.ints(y)
            //                        << std::endl;
          }
        case framework::proto::AttrType::STRINGS:
          for (int y = 0; y < attr.strings_size(); ++y) {
            //              std::cout << "   string - " << y << ": " <<
            //              attr.strings(y)
            //                        << std::endl;
          }
朔-望's avatar
朔-望 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        }
      }
    }

    for (int k = 0; k < block.vars().size(); ++k) {
      framework::proto::VarDesc var = block.vars()[k];
      if (var.type().type() == framework::proto::VarType::LOD_TENSOR) {
        //        std::cout << " var name: " << var.name() << std::endl;
        const framework::proto::VarType::TensorDesc &tensor_desc =
            var.type().lod_tensor().tensor();
        //        std::cout << "  in var tensor desc dims size "
        //                  << tensor_desc.dims().size() << std::endl;
        int memory_size = 1;
        for (int l = 0; l < tensor_desc.dims().size(); ++l) {
          //          std::cout << " var tensor desc dim " << l
          //                    << " value: " << tensor_desc.dims()[l] <<
          //                    std::endl;
        }
      }

      if (var.persistable() &&
          var.type().type() != framework::proto::VarType::FEED_MINIBATCH &&
          var.type().type() != framework::proto::VarType::FETCH_LIST) {
        //        std::cout << "  to load " << var.name() << std::endl;
        std::string file_path = dirname + "/" + var.name();
        std::ifstream is(file_path);
L
liuruilong 已提交
283
        std::streampos pos = is.tellg(); //   save   current   position
朔-望's avatar
朔-望 已提交
284 285
        is.seekg(0, std::ios::end);
        //        std::cout << "  file length = " << is.tellg() << std::endl;
L
liuruilong 已提交
286
        is.seekg(pos); //   restore   saved   position
朔-望's avatar
朔-望 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

        // 1. version
        uint32_t version;
        is.read(reinterpret_cast<char *>(&version), sizeof(version));
        //        std::cout << "   version: " << version << std::endl;

        // 2 Lod information
        uint64_t lod_level;
        is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
        //        std::cout << "   load level: " << lod_level << std::endl;
        //        std::cout << "   lod info: " << std::endl;
        for (uint64_t i = 0; i < lod_level; ++i) {
          uint64_t size;
          is.read(reinterpret_cast<char *>(&size), sizeof(size));
          std::vector<size_t> tmp(size / sizeof(size_t));
          is.read(reinterpret_cast<char *>(tmp.data()),
                  static_cast<std::streamsize>(size));
          for (int j = 0; j < tmp.size(); ++j) {
            //            std::cout << "    lod - " << tmp[j] << std::endl;
          }
        }

        uint32_t tensor_version;
        is.read(reinterpret_cast<char *>(&version), sizeof(version));
        //        std::cout << "   tensor_version: " << tensor_version <<
        //        std::endl;

        int32_t size;
        is.read(reinterpret_cast<char *>(&size), sizeof(size));
        //        std::cout << "   tensor desc size: " << size << std::endl;
        std::unique_ptr<char[]> buf(new char[size]);
        is.read(reinterpret_cast<char *>(buf.get()), size);

        framework::proto::VarType::TensorDesc desc;
        desc.ParseFromArray(buf.get(), size);

        //        std::cout << "   desc dims size " << desc.dims().size() <<
        //        std::endl;
        int memory_size = 1;
        for (int l = 0; l < desc.dims().size(); ++l) {
          //          std::cout << "    dim " << l << " value: " <<
          //          desc.dims()[l]
          //                    << std::endl;
          memory_size *= desc.dims()[l];
        }

        int type_size = 0;
        //        std::cout << "    desc pre type: ";
        switch (desc.data_type()) {
L
liuruilong 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        case framework::proto::VarType::FP16:
          //            std::cout << "FP16" << std::endl;
          type_size = 2;
          break;
        case framework::proto::VarType::FP32:
          type_size = 4;
          //            std::cout << "FP32" << std::endl;
          break;
        case framework::proto::VarType::FP64:
          type_size = 8;
          //            std::cout << "FP64" << std::endl;
          break;
        case framework::proto::VarType::INT32:
          type_size = 4;
          //            std::cout << "INT32" << std::endl;
          break;
        case framework::proto::VarType::INT64:
          type_size = 8;
          //            std::cout << "INT64" << std::endl;
          break;
        case framework::proto::VarType::BOOL:
          type_size = 1;
          //            std::cout << "BOOL" << std::endl;
          break;
        default:
          break;
          //            std::cout << "    not support" << std::endl;
朔-望's avatar
朔-望 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
        }

        //        std::cout << "    malloc size: " << memory_size * type_size
        //                  << std::endl;
        void *memory = malloc(memory_size * type_size);
        is.read(static_cast<char *>(memory), memory_size * type_size);
        //        std::cout << "    memory: " << memory << std::endl;
        is.close();
      } else {
        //        std::cout << "  *not load "
        //                  << " var : " << var.name() << std::endl;
      }
    }
  }

#endif
  return program;
}

template class Loader<CPU, Precision::FP32>;

L
liuruilong 已提交
384
} // namespace paddle_mobile