op_params.h 25.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/desc_apis.h"
#include "lite/utils/all.h"
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
  float input_scale{1.0};            \
  std::vector<float> weight_scale{}; \
40 41
  float output_scale{1.0};           \
  int bit_length{8};
Y
Yan Chunwei 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

/// ----------------------- Functional operators ------------------------------
struct FeedParam {
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

struct FetchParam {
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
struct IoCopyParam {
  const lite::Tensor* x{};
  lite::Tensor* y{};
};

struct LayoutParam {
  const lite::Tensor* x{};
  lite::Tensor* y{};
};

struct CalibParam {
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
};

struct GraphParam {
74
  std::vector<std::pair<std::string, const lite::Tensor*>> inputs{};
75
  lite::Tensor* weight{};
76
  std::vector<std::pair<std::string, lite::Tensor*>> outputs{};
Y
Yan Chunwei 已提交
77 78 79 80 81 82 83 84 85 86 87
};

/// -------------------------- NN operators ------------------------------------

struct FcParam {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
88
  std::string activation_type{""};
Y
Yan Chunwei 已提交
89 90 91 92
  // for int8
  WITH_INT8_CONFIG
};

93 94 95 96 97 98 99 100
struct SearchSeqFcParam {
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
101 102 103 104 105
// For Interpolate Op
struct InterpolateParam {
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
106
  std::vector<const lite::Tensor*> SizeTensor;
107
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
108 109 110 111 112

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
113
  int align_mode{1};
Y
Yan Chunwei 已提交
114
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
115
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
};

// For Mul Op
struct MulParam {
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
};

struct MulGradParam {
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
// For ReduceMean Op
struct ReduceMeanParam {
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
struct StackParam {
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
// For Power Op
struct PowerParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

struct ShuffleChannelParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
struct YoloBoxParam {
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
struct ScaleParam {
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
};

// For Softmax op
struct SoftmaxParam {
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
};

// For Reshape and Reshape2 Op
struct ReshapeParam {
  const lite::Tensor* x{};
208 209 210
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
211 212
  lite::Tensor* output{};

213
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
214 215 216 217 218 219 220 221
  bool inplace{false};
};

// For Concat op
struct ConcatParam {
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
222
  lite::Tensor* axis_tensor{};
Y
Yan Chunwei 已提交
223 224
};

225 226 227 228 229 230 231 232 233
/// ----------------------- activation operators ----------------------
struct ActivationParam {
  const lite::Tensor* X{};
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
234 235
  float hard_sigmoid_slope{0.2};
  float hard_sigmoid_offset{0.5};
236 237 238 239 240 241 242 243 244 245 246 247 248
  lite::Tensor* Out{};
  bool has_active{false};
  lite_api::ActivationType active_type;
};

struct ActivationGradParam {
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
249 250 251 252 253 254 255 256
// For Convolution op
struct ConvParam {
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
257 258 259 260 261 262
  /* paddings type change
  * from std::vector<int> to std::shared_ptr<std::vector<int>>
  * to support dynamically modify padding
  * let kernel param and operator param Synchronous update
  */
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
263
  int groups{1};
H
HappyAngel 已提交
264 265 266 267 268 269
  /* dilations type change
  * from std::vector<int> to std::shared_ptr<std::vector<int>>
  * to support dynamically modify padding
  * let kernel param and operator param Synchronous update
  */
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
270 271 272 273 274 275 276 277 278 279 280 281
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
282 283
  // for activation
  ActivationParam activation_param;
Y
Yan Chunwei 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
  // for int8
  WITH_INT8_CONFIG
};

// For BatchNorm op
struct BatchNormParam {
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
};

// For Pooling op
struct PoolParam {
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
316 317 318 319 320 321
  /* paddings type change
  * from std::vector<int> to std::shared_ptr<std::vector<int>>
  * to support dynamically modify padding
  * let kernel param and operator param Synchronous update
  */
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
322 323 324 325 326
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
327 328
  // for int8
  WITH_INT8_CONFIG
Y
Yan Chunwei 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
};

// For Dropout op
struct DropoutParam {
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
struct SplitParam {
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
347 348 349
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
350 351 352 353 354 355 356 357 358
  int axis{-1};
  int num{0};
  std::vector<int> sections;
};

// For Transpose op
struct TransposeParam {
  const lite::Tensor* x{};
  lite::Tensor* output{};
359 360
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
361 362 363 364 365 366 367 368 369 370 371
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
};

/// ----------------------- element wise operators ----------------------
struct ElementwiseParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
372
  // for int8
Z
Zhaolong Xing 已提交
373
  WITH_INT8_CONFIG
J
juncaipeng 已提交
374 375
  float x_input_scale{1.0};
  float y_input_scale{1.0};
Y
Yan Chunwei 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
};

struct ElementwiseGradParam {
  const lite::Tensor* Y{};
  const lite::Tensor* Out_grad{};
  lite::Tensor* X_grad{};
  lite::Tensor* Y_grad{};
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
struct MeanParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

struct MeanGradParam {
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
struct FillConstantParam {
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
411 412 413
  lite::Tensor* shape_tensor;
  std::vector<lite::Tensor*> shape_tensor_list{};

Y
Yan Chunwei 已提交
414 415 416 417 418
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* Out{};
};
T
TianXiaogang 已提交
419 420 421 422 423 424 425 426 427 428 429
struct FillConstantBatchLikeParam {
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
  const lite::Tensor* input{};
  int input_dim_idx{0};
  int output_dim_idx{0};
};
Y
Yan Chunwei 已提交
430

431 432 433 434 435 436 437 438 439 440 441
struct FillConstantBatchSizeLikeParam {
  lite::Tensor* Input;
  lite::Tensor* Out;

  std::vector<int> shape;
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
};

Y
Yan Chunwei 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
//
struct FakeQuantizeMovingAvgMaxAbsParam {
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
  float moving_rate{0.9};
};

struct FakeDequantizeMaxAbsParam {
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

464 465 466 467 468 469 470
struct FakeChannelWiseDequantizeMaxAbsParam {
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

Y
Yan Chunwei 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
/// ----------------------- sgd operators ----------------------
struct SGDParam {
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
struct UniformRandomParam {
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
struct NegativeParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
struct Pad2dParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
struct CropParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
struct ArgmaxParam {
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
struct AxpyParam {
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
struct GRUUnitParam {
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
struct LrnParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
547 548
  int n{5};
  float alpha{1e-4};
Y
Yan Chunwei 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
  float beta{0.75};
  float k{1.};
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
struct DecodeBboxesParam {
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
struct BoxCoderParam {
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
577 578 579 580
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
Y
Yan Chunwei 已提交
581 582 583 584
};

/// ----------------------- multiclass_nms operators ----------------------
struct MulticlassNmsParam {
585 586 587 588 589 590 591 592
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
  float nms_threshold{0.3};
  float nms_eta{1.0};
Y
Yan Chunwei 已提交
593
  int keep_top_k;
594
  bool normalized{true};
Y
Yan Chunwei 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
};

/// ----------------------- priorbox operators ----------------------
struct PriorBoxParam {
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
618
  bool min_max_aspect_ratios_order{false};
Y
Yan Chunwei 已提交
619 620 621 622 623
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
624
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
};
/// ----------------------- GRU operators ----------------------f
struct GRUParam {
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
struct BeamSearchDecodeParam {
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
struct LookupTableParam {
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

struct Im2SequenceParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

struct SequenceSoftmaxParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

struct NormParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
679
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
680 681 682
  int axis{1};
  float epsilon{1e-10};
};
T
TianXiaogang 已提交
683 684 685 686 687 688 689 690 691 692
struct LayerNormParam {
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
  float epsilon{1e-5};
};
Y
Yan Chunwei 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

struct LogicalParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

struct CompareParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

struct WhileParam {
  Scope* scope{};
  Tensor* cond{};
  cpp::BlockDesc* sub_block{};
  std::vector<Tensor*> x{};
  std::vector<Tensor*> outs{};
};

struct TopkParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

struct IncrementParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

struct WriteToArrayParam {
  const lite::Tensor* X{};
  const lite::Tensor* I{};
  std::vector<lite::Tensor>* Out{};
};

struct ReadFromArrayParam {
  std::vector<lite::Tensor>* X{};
  lite::Tensor* I{};
  lite::Tensor* Out{};
};

struct BeamSearchParam {
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

struct SequencePoolParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
758 759 760
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
761
  lite::Tensor* MaxIndex{};
762
#endif
Y
Yan Chunwei 已提交
763 764
};

765 766 767 768 769 770 771 772
struct SearchGroupPaddingParam {
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

773 774 775 776 777 778
struct SequenceReshapeParam {
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

Y
Yan Chunwei 已提交
779 780 781 782 783 784 785
struct SequenceExpandParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

L
lhl960107 已提交
786 787 788 789 790 791
struct SequenceExpandAsParam {
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

792 793 794 795 796
struct SequenceReverseParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

797 798 799 800 801
struct SequenceConcatParam {
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

802 803 804 805 806 807 808 809 810
struct AttentionPaddingMaskParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

811 812 813 814 815 816 817
struct SequenceArithmeticParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

Y
Yan Chunwei 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
struct ReduceMaxParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

struct LodResetParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

struct IsEmptyParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
837 838 839 840 841 842 843 844 845

struct ReduceParam {
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
struct VarConv2DParam {
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
};

Y
Yan Chunwei 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/// ----------------------- shape operators ----------------------
struct ShapeParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

struct CastParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

struct SliceParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
882 883 884 885 886
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
Y
Yan Chunwei 已提交
887
};
Y
Yan Chunwei 已提交
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
struct AffineChannelParam {
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

struct AnchorGeneratorParam {
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
  std::vector<float> variances{{0.1, 0.1, 0.2, 0.2}};
  float offset{0.5};

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

struct GenerateProposalsParam {
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
  float nms_thresh{0.5};
  float min_size{0.1};
  float eta{1.0};

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
928
/// ----------------------- squeeze operators ----------------------
Y
Yan Chunwei 已提交
929 930 931 932 933 934 935
struct SqueezeParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
};

936 937 938 939 940
struct UnsqueezeParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
941
  const lite::Tensor* axes_tensor{};
942
  std::vector<const lite::Tensor*> axes_tensor_vct{};
943 944
};

Y
Yan Chunwei 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/// ----------------------- expand operators ----------------------
struct ExpandParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

/// ----------------------- matmul operators ----------------------
struct MatMulParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
};
961

T
TianXiaogang 已提交
962 963 964 965 966 967
struct GatherParam {
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

968 969 970 971 972
/// ----------------------- assign operators -----------------------
struct AssignParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
973

974
/// ----------------------- roi_align operators -----------------------
975 976 977 978 979 980 981 982 983 984
struct RoiAlignParam {
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

985
/// ----------------------- box_clip operators -----------------------
986 987 988 989 990 991
struct BoxClipParam {
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

992 993 994 995 996 997 998
struct RangeParam {
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

999 1000 1001 1002 1003 1004 1005 1006 1007
/// ----------------------- assign_value operators -----------------------
struct AssignValueParam {
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
  lite::Tensor* Out{};
};

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
/// --------------- sequence_topk_avg_pooling operators ------------------
struct SequenceTopkAvgPoolingParam {
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

/// --------------- search_fc operators ------------------
struct SearchFcParam {
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
};
J
juncaipeng 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/// --------------------- match_matrix_tensor operators --------------------
struct MatchMatrixTensorParam {
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
};

/// --------------------- search_seq_depadding operators --------------------
struct SearchSeqDepaddingParam {
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
struct SearchGrnnParam {
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
};

J
juncaipeng 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
struct SplitLodTensorParam {
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

struct MergeLodTensorParam {
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

struct ConditionalBlockParam {
  const lite::Tensor* cond{};
  std::vector<lite::Tensor*> x{};
  std::vector<lite::Tensor*> outs{};
  cpp::BlockDesc* sub_block{};
  Scope* scope{};
  bool is_scalar_condition{};
};

struct CollectFpnProposalsParam {
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

Y
Yan Chunwei 已提交
1092 1093 1094
}  // namespace operators
}  // namespace lite
}  // namespace paddle