op_params.h 20.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <string>
#include <vector>
18
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
19 20
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
21
#include "lite/core/types.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/desc_apis.h"
#include "lite/utils/all.h"
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
  float input_scale{1.0};            \
  std::vector<float> weight_scale{}; \
38 39
  float output_scale{1.0};           \
  int bit_length{8};
Y
Yan Chunwei 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

/// ----------------------- Functional operators ------------------------------
struct FeedParam {
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

struct FetchParam {
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
struct IoCopyParam {
  const lite::Tensor* x{};
  lite::Tensor* y{};
};

struct LayoutParam {
  const lite::Tensor* x{};
  lite::Tensor* y{};
};

struct CalibParam {
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
};

struct GraphParam {
  std::vector<const lite::Tensor*> inputs{};
  std::vector<lite::Tensor*> outputs{};
  std::string model_name{"model"};
};

/// -------------------------- NN operators ------------------------------------

struct FcParam {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
};

// For Interpolate Op
struct InterpolateParam {
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
  std::string interp_method{"Nearest"};
};

// For Mul Op
struct MulParam {
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
};

struct MulGradParam {
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
// For ReduceMean Op
struct ReduceMeanParam {
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
struct StackParam {
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
// For Power Op
struct PowerParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

struct ShuffleChannelParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
struct YoloBoxParam {
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
struct ScaleParam {
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
};

// For Softmax op
struct SoftmaxParam {
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
};

// For Reshape and Reshape2 Op
struct ReshapeParam {
  const lite::Tensor* x{};
  const lite::Tensor* actual_shape{nullptr};
  lite::Tensor* output{};
  lite::Tensor* xshape{};

  std::vector<int> shape{};
  bool inplace{false};
};

// For Concat op
struct ConcatParam {
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
};

208 209 210 211 212 213 214 215 216
/// ----------------------- activation operators ----------------------
struct ActivationParam {
  const lite::Tensor* X{};
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
217 218
  float hard_sigmoid_slope{0.2};
  float hard_sigmoid_offset{0.5};
219 220 221 222 223 224 225 226 227 228 229 230 231
  lite::Tensor* Out{};
  bool has_active{false};
  lite_api::ActivationType active_type;
};

struct ActivationGradParam {
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
// For Convolution op
struct ConvParam {
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0};
  int groups{1};
  std::vector<int> dilations{1, 1};
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
255 256
  // for activation
  ActivationParam activation_param;
Y
Yan Chunwei 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  // for int8
  WITH_INT8_CONFIG
};

// For BatchNorm op
struct BatchNormParam {
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
};

// For Pooling op
struct PoolParam {
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0};
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
};

// For Dropout op
struct DropoutParam {
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
struct SplitParam {
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
  int axis{-1};
  int num{0};
  std::vector<int> sections;
};

// For Transpose op
struct TransposeParam {
  const lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
};

/// ----------------------- element wise operators ----------------------
struct ElementwiseParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
Z
Zhaolong Xing 已提交
333
  WITH_INT8_CONFIG
Y
Yan Chunwei 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
};

struct ElementwiseGradParam {
  const lite::Tensor* Y{};
  const lite::Tensor* Out_grad{};
  lite::Tensor* X_grad{};
  lite::Tensor* Y_grad{};
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
struct MeanParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

struct MeanGradParam {
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
struct FillConstantParam {
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* Out{};
};

375 376 377 378 379 380 381 382 383 384 385
struct FillConstantBatchSizeLikeParam {
  lite::Tensor* Input;
  lite::Tensor* Out;

  std::vector<int> shape;
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
};

Y
Yan Chunwei 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
//
struct FakeQuantizeMovingAvgMaxAbsParam {
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
  float moving_rate{0.9};
};

struct FakeDequantizeMaxAbsParam {
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

/// ----------------------- sgd operators ----------------------
struct SGDParam {
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
struct UniformRandomParam {
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
struct NegativeParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
struct Pad2dParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
struct CropParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
struct ArgmaxParam {
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
struct AxpyParam {
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
struct GRUUnitParam {
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
struct LrnParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int local_size{5};
  float alpha{1.};
  float beta{0.75};
  float k{1.};
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
struct DecodeBboxesParam {
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
struct BoxCoderParam {
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
514 515 516 517
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
Y
Yan Chunwei 已提交
518 519 520 521
};

/// ----------------------- multiclass_nms operators ----------------------
struct MulticlassNmsParam {
522 523 524 525 526 527 528 529
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
  float nms_threshold{0.3};
  float nms_eta{1.0};
Y
Yan Chunwei 已提交
530
  int keep_top_k;
531
  bool normalized{true};
Y
Yan Chunwei 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
};

/// ----------------------- priorbox operators ----------------------
struct PriorBoxParam {
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
555
  bool min_max_aspect_ratios_order{false};
Y
Yan Chunwei 已提交
556 557 558 559 560
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
561
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
};
/// ----------------------- GRU operators ----------------------f
struct GRUParam {
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
struct BeamSearchDecodeParam {
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
struct LookupTableParam {
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

struct Im2SequenceParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

struct SequenceSoftmaxParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

struct NormParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
616
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
  int axis{1};
  float epsilon{1e-10};
};

struct LogicalParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

struct CompareParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

struct WhileParam {
  Scope* scope{};
  Tensor* cond{};
  cpp::BlockDesc* sub_block{};
  std::vector<Tensor*> x{};
  std::vector<Tensor*> outs{};
};

struct TopkParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

struct IncrementParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

struct WriteToArrayParam {
  const lite::Tensor* X{};
  const lite::Tensor* I{};
  std::vector<lite::Tensor>* Out{};
};

struct ReadFromArrayParam {
  std::vector<lite::Tensor>* X{};
  lite::Tensor* I{};
  lite::Tensor* Out{};
};

struct BeamSearchParam {
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

struct SequencePoolParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
685 686 687 688
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
#endif
Y
Yan Chunwei 已提交
689 690 691 692 693 694 695 696 697
};

struct SequenceExpandParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

L
lhl960107 已提交
698 699 700 701 702 703
struct SequenceExpandAsParam {
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

Y
Yan Chunwei 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
struct ReduceMaxParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

struct LodResetParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

struct IsEmptyParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- shape operators ----------------------
struct ShapeParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

struct CastParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

struct SliceParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
};
Y
Yan Chunwei 已提交
744

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
struct AffineChannelParam {
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

struct AnchorGeneratorParam {
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
  std::vector<float> variances{{0.1, 0.1, 0.2, 0.2}};
  float offset{0.5};

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

struct GenerateProposalsParam {
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
  float nms_thresh{0.5};
  float min_size{0.1};
  float eta{1.0};

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
784
/// ----------------------- squeeze operators ----------------------
Y
Yan Chunwei 已提交
785 786 787 788 789 790 791
struct SqueezeParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
};

792 793 794 795 796 797 798
struct UnsqueezeParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
};

Y
Yan Chunwei 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
/// ----------------------- expand operators ----------------------
struct ExpandParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

/// ----------------------- matmul operators ----------------------
struct MatMulParam {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
};
815 816 817 818 819 820

/// ----------------------- assign operators -----------------------
struct AssignParam {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
821

822
/// ----------------------- roi_align operators -----------------------
823 824 825 826 827 828 829 830 831 832
struct RoiAlignParam {
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

833
/// ----------------------- box_clip operators -----------------------
834 835 836 837 838 839
struct BoxClipParam {
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

840 841 842 843 844 845 846
struct RangeParam {
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

847 848 849 850 851 852 853 854 855
/// ----------------------- assign_value operators -----------------------
struct AssignValueParam {
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
  lite::Tensor* Out{};
};

Y
Yan Chunwei 已提交
856 857 858
}  // namespace operators
}  // namespace lite
}  // namespace paddle