Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
0260d322
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0260d322
编写于
10月 14, 2019
作者:
J
juncaipeng
提交者:
GitHub
10月 14, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize quant_dequant_fuse_pass (#2169)
* optimize quant_dequant_fuse_pass, test=develop
上级
9aa795ca
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
159 addition
and
165 deletion
+159
-165
lite/api/mobilenetv1_int8_test.cc
lite/api/mobilenetv1_int8_test.cc
+15
-0
lite/core/mir/fusion/quant_dequant_fuse_pass.cc
lite/core/mir/fusion/quant_dequant_fuse_pass.cc
+51
-7
lite/core/mir/fusion/quant_dequant_op_fuser.cc
lite/core/mir/fusion/quant_dequant_op_fuser.cc
+88
-150
lite/core/mir/fusion/quant_dequant_op_fuser.h
lite/core/mir/fusion/quant_dequant_op_fuser.h
+3
-7
lite/operators/op_params.h
lite/operators/op_params.h
+2
-1
未找到文件。
lite/api/mobilenetv1_int8_test.cc
浏览文件 @
0260d322
...
...
@@ -74,6 +74,21 @@ void TestModel(const std::vector<Place>& valid_places,
1e-6
);
}
}
auto
*
out_data
=
out
->
data
<
float
>
();
LOG
(
INFO
)
<<
"output data:"
;
for
(
int
i
=
0
;
i
<
out
->
numel
();
i
+=
step
)
{
LOG
(
INFO
)
<<
out_data
[
i
];
}
float
max_val
=
out_data
[
0
];
int
max_val_arg
=
0
;
for
(
int
i
=
1
;
i
<
out
->
numel
();
i
++
)
{
if
(
max_val
<
out_data
[
i
])
{
max_val
=
out_data
[
i
];
max_val_arg
=
i
;
}
}
LOG
(
INFO
)
<<
"max val:"
<<
max_val
<<
", max_val_arg:"
<<
max_val_arg
;
}
TEST
(
MobileNetV1
,
test_arm
)
{
...
...
lite/core/mir/fusion/quant_dequant_fuse_pass.cc
浏览文件 @
0260d322
...
...
@@ -13,7 +13,9 @@
// limitations under the License.
#include "lite/core/mir/fusion/quant_dequant_fuse_pass.h"
#include <list>
#include <memory>
#include <unordered_set>
#include <vector>
#include "lite/api/paddle_place.h"
#include "lite/core/mir/fusion/quant_dequant_op_fuser.h"
...
...
@@ -24,18 +26,60 @@ namespace lite {
namespace
mir
{
void
QuantDequantFusePass
::
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
{
// obtain useful values and save to quantized_node, remove quant_nodes and
// releated nodes
std
::
unordered_set
<
std
::
string
>
quant_types
=
{
"fake_quantize_range_abs_max"
,
"fake_quantize_moving_average_abs_max"
};
std
::
unordered_set
<
std
::
string
>
quantized_op_types
=
{
"conv2d"
,
"mul"
,
"depthwise_conv2d"
};
for
(
auto
&
quant_type
:
quant_types
)
{
for
(
auto
&
op_type
:
quantized_op_types
)
{
for
(
int
i
=
6
;
i
>=
1
;
i
--
)
{
fusion
::
QuantDequantOpFuser
fuser
(
op_type
,
quant_type
,
i
);
fuser
(
graph
.
get
());
for
(
auto
&
cur_node
:
graph
->
mutable_nodes
())
{
if
(
cur_node
.
IsStmt
()
&&
quant_types
.
count
(
cur_node
.
stmt
()
->
op_type
()))
{
// find input nodes and output nodes
std
::
list
<
Node
*>
input_nodes
=
cur_node
.
inlinks
;
std
::
list
<
Node
*>
output_nodes
=
cur_node
.
outlinks
;
CHECK_EQ
(
input_nodes
.
size
(),
2
);
CHECK_EQ
(
output_nodes
.
size
(),
2
);
bool
front_is_scale
=
input_nodes
.
front
()
->
arg
()
->
is_weight
;
Node
*
input_scale_node
=
front_is_scale
?
input_nodes
.
front
()
:
input_nodes
.
back
();
Node
*
input_act_node
=
front_is_scale
?
input_nodes
.
back
()
:
input_nodes
.
front
();
front_is_scale
=
output_nodes
.
front
()
->
arg
()
->
is_weight
;
Node
*
output_scale_node
=
front_is_scale
?
output_nodes
.
front
()
:
output_nodes
.
back
();
Node
*
output_act_node
=
front_is_scale
?
output_nodes
.
back
()
:
output_nodes
.
front
();
// relink nodes and save value to quantized_node
int
bit_length
=
cur_node
.
stmt
()
->
op_info
()
->
GetAttr
<
int
>
(
"bit_length"
);
int
range
=
((
1
<<
(
bit_length
-
1
))
-
1
);
auto
*
scope
=
cur_node
.
stmt
()
->
op
()
->
scope
();
auto
scale_tensor
=
scope
->
FindVar
(
output_scale_node
->
arg
()
->
name
)
->
GetMutable
<
lite
::
Tensor
>
();
float
scale_value
=
scale_tensor
->
data
<
float
>
()[
0
]
/
range
;
for
(
auto
*
quantized_node_ptr
:
output_act_node
->
outlinks
)
{
quantized_node_ptr
->
stmt
()
->
mutable_op_info
()
->
SetAttr
<
int
>
(
"bit_length"
,
bit_length
);
quantized_node_ptr
->
stmt
()
->
mutable_op_info
()
->
SetAttr
<
float
>
(
"input_scale"
,
scale_value
);
IR_NODE_LINK_TO
(
input_act_node
,
quantized_node_ptr
)
RemoveDirectedLink
(
output_act_node
,
quantized_node_ptr
);
}
// delete nodes and edges
std
::
unordered_set
<
const
Node
*>
nodes2rm
=
{
input_scale_node
,
&
cur_node
,
output_scale_node
,
output_act_node
};
GraphSafeRemoveNodes
(
graph
.
get
(),
nodes2rm
);
}
}
// fuse quantized node and dequant node
std
::
unordered_set
<
std
::
string
>
quantized_op_types
=
{
"conv2d"
,
"mul"
,
"depthwise_conv2d"
};
for
(
auto
&
op_type
:
quantized_op_types
)
{
fusion
::
QuantDequantOpFuser
fuser
(
op_type
);
fuser
(
graph
.
get
());
}
}
}
// namespace mir
...
...
lite/core/mir/fusion/quant_dequant_op_fuser.cc
浏览文件 @
0260d322
...
...
@@ -23,170 +23,108 @@ namespace mir {
namespace
fusion
{
void
QuantDequantOpFuser
::
BuildPattern
()
{
const
int
kNumFields
=
5
;
const
int
kQuantizedWeightOffset
=
0
;
const
int
kQuantizedOpOffset
=
1
;
const
int
kQuantizedOpOutOffset
=
2
;
const
int
kDequantOpOffset
=
3
;
const
int
kDequantOpOutOffset
=
4
;
std
::
string
weight_name
=
""
;
if
(
op_type_
==
"conv2d"
||
op_type_
==
"depthwise_conv2d"
)
{
weight_name
=
"Filter"
;
}
else
{
weight_name
=
"Y"
;
}
auto
*
quant_op_input
=
VarNode
(
"quant_op_input"
)
->
assert_is_op_input
(
quant_type_
,
"X"
)
->
AsInput
();
auto
*
quant_op_in_scale
=
VarNode
(
"quant_op_in_scale"
)
->
assert_is_op_input
(
quant_type_
,
"InScale"
)
->
AsIntermediate
();
auto
*
quant_op
=
OpNode
(
"quant_op"
,
quant_type_
)
->
assert_is_op
(
quant_type_
)
->
AsIntermediate
();
auto
*
quant_op_out_scale
=
VarNode
(
"quant_op_out_scale"
)
->
assert_is_op_output
(
quant_type_
,
"OutScale"
)
->
assert_is_op_input
(
"fake_dequantize_max_abs"
,
"Scale"
)
->
AsIntermediate
();
auto
*
quant_op_out
=
VarNode
(
"quant_op_out"
)
->
assert_is_op_output
(
quant_type_
,
"Out"
)
->
assert_is_op_input
(
op_type_
)
auto
*
quantized_op_input
=
VarNode
(
"quantized_op_input"
)
->
assert_is_op_input
(
op_type_
)
->
AsInput
();
auto
*
quantized_op_weight
=
VarNode
(
"quantized_op_weight"
)
->
assert_is_op_input
(
op_type_
,
weight_name
)
->
AsInput
();
auto
*
quantized_op
=
OpNode
(
"quantized_op"
,
op_type_
)
->
assert_is_op
(
op_type_
)
->
AsIntermediate
();
std
::
vector
<
PMNode
*>
nodes
;
for
(
int
i
=
0
;
i
<
times_
;
i
++
)
{
nodes
.
push_back
(
VarNode
(
string_format
(
"quantized_op_weight%d"
,
i
))
->
assert_is_op_input
(
op_type_
,
weight_name
)
->
AsInput
());
nodes
.
push_back
(
OpNode
(
string_format
(
"quantized_op%d"
,
i
),
op_type_
)
->
assert_is_op
(
op_type_
)
->
AsIntermediate
());
nodes
.
push_back
(
VarNode
(
string_format
(
"quantized_op_out%d"
,
i
))
->
assert_is_op_output
(
op_type_
)
->
assert_is_op_input
(
"fake_dequantize_max_abs"
,
"X"
)
->
AsIntermediate
());
nodes
.
push_back
(
OpNode
(
string_format
(
"dequant_op%d"
,
i
),
"fake_dequantize_max_abs"
)
->
assert_is_op
(
"fake_dequantize_max_abs"
)
->
AsIntermediate
());
nodes
.
push_back
(
VarNode
(
string_format
(
"dequant_op_out%d"
,
i
))
->
assert_is_op_output
(
"fake_dequantize_max_abs"
,
"Out"
)
->
AsOutput
());
}
quant_op
->
LinksFrom
({
quant_op_input
,
quant_op_in_scale
});
quant_op_out
->
LinksFrom
({
quant_op
});
quant_op_out_scale
->
LinksFrom
({
quant_op
});
for
(
int
i
=
0
;
i
<
times_
;
i
++
)
{
nodes
[
i
*
kNumFields
+
kQuantizedOpOffset
]
->
LinksFrom
(
{
quant_op_out
,
nodes
[
i
*
kNumFields
+
kQuantizedWeightOffset
]});
nodes
[
i
*
kNumFields
+
kQuantizedOpOutOffset
]
->
LinksFrom
(
{
nodes
[
i
*
kNumFields
+
kQuantizedOpOffset
]});
nodes
[
i
*
kNumFields
+
kDequantOpOffset
]
->
LinksFrom
(
{
nodes
[
i
*
kNumFields
+
kQuantizedOpOutOffset
],
quant_op_out_scale
});
nodes
[
i
*
kNumFields
+
kDequantOpOutOffset
]
->
LinksFrom
(
{
nodes
[
i
*
kNumFields
+
kDequantOpOffset
]});
}
auto
*
quantized_op_out
=
VarNode
(
"quantized_op_out"
)
->
assert_is_op_output
(
op_type_
)
->
assert_is_op_input
(
"fake_dequantize_max_abs"
,
"X"
)
->
AsIntermediate
();
auto
*
dequant_op
=
OpNode
(
"dequant_op"
,
"fake_dequantize_max_abs"
)
->
assert_is_op
(
"fake_dequantize_max_abs"
)
->
AsIntermediate
();
auto
*
dequant_op_out
=
VarNode
(
"dequant_op_out"
)
->
assert_is_op_output
(
"fake_dequantize_max_abs"
,
"Out"
)
->
AsOutput
();
quantized_op
->
LinksFrom
({
quantized_op_input
,
quantized_op_weight
});
quantized_op_out
->
LinksFrom
({
quantized_op
});
dequant_op
->
LinksFrom
({
quantized_op_out
});
dequant_op_out
->
LinksFrom
({
dequant_op
});
}
void
QuantDequantOpFuser
::
InsertNewNode
(
SSAGraph
*
graph
,
const
key2nodes_t
&
matched
)
{
const
int
kNumFields
=
5
;
const
int
kQuantizedWeightOffset
=
0
;
const
int
kQuantizedOpOffset
=
1
;
const
int
kDequantOpOffset
=
3
;
const
int
kDequantOpOutOffset
=
4
;
auto
*
quant_op_input
=
matched
.
at
(
"quant_op_input"
);
auto
*
quant_op_in_scale
=
matched
.
at
(
"quant_op_in_scale"
);
auto
*
quant_op
=
matched
.
at
(
"quant_op"
);
std
::
vector
<
Node
*>
nodes
;
for
(
int
i
=
0
;
i
<
times_
;
i
++
)
{
nodes
.
push_back
(
matched
.
at
(
string_format
(
"quantized_op_weight%d"
,
i
)));
nodes
.
push_back
(
matched
.
at
(
string_format
(
"quantized_op%d"
,
i
)));
nodes
.
push_back
(
matched
.
at
(
string_format
(
"quantized_op_out%d"
,
i
)));
nodes
.
push_back
(
matched
.
at
(
string_format
(
"dequant_op%d"
,
i
)));
nodes
.
push_back
(
matched
.
at
(
string_format
(
"dequant_op_out%d"
,
i
)));
}
int
bit_length
=
quant_op
->
stmt
()
->
op_info
()
->
GetAttr
<
int
>
(
"bit_length"
);
auto
*
scope
=
quant_op
->
stmt
()
->
op
()
->
scope
();
auto
&
valid_places
=
quant_op
->
stmt
()
->
op
()
->
valid_places
();
auto
*
quant_op_input
=
matched
.
at
(
"quantized_op_input"
);
auto
*
quantized_op_weight
=
matched
.
at
(
"quantized_op_weight"
);
auto
*
quantized_op
=
matched
.
at
(
"quantized_op"
);
auto
*
dequant_op
=
matched
.
at
(
"dequant_op"
);
auto
*
dequant_op_out
=
matched
.
at
(
"dequant_op_out"
);
// obtain input_scale and weight_scale
auto
*
scope
=
quantized_op
->
stmt
()
->
op
()
->
scope
();
auto
&
valid_places
=
quantized_op
->
stmt
()
->
op
()
->
valid_places
();
int
bit_length
=
quantized_op
->
stmt
()
->
op_info
()
->
GetAttr
<
int
>
(
"bit_length"
);
int
range
=
((
1
<<
(
bit_length
-
1
))
-
1
);
auto
input_scale_t
=
scope
->
FindVar
(
quant_op_in_scale
->
arg
()
->
name
)
->
GetMutable
<
lite
::
Tensor
>
();
float
input_scale
=
input_scale_t
->
data
<
float
>
()[
0
]
/
range
;
VLOG
(
4
)
<<
"range: "
<<
range
<<
" input_scale: "
<<
input_scale
;
for
(
int
i
=
0
;
i
<
times_
;
i
++
)
{
float
max_range
=
nodes
[
i
*
kNumFields
+
kDequantOpOffset
]
->
stmt
()
->
op_info
()
->
GetAttr
<
float
>
(
"max_range"
);
// weight_scale = max(abs(weight))
float
whole_weight_scale
=
static_cast
<
float
>
(
range
*
range
)
/
max_range
/
range
;
cpp
::
OpDesc
op_desc
=
*
nodes
[
i
*
kNumFields
+
kQuantizedOpOffset
]
->
stmt
()
->
op_info
();
auto
quantized_weight_var_name
=
nodes
[
i
*
kNumFields
+
kQuantizedWeightOffset
]
->
arg
()
->
name
;
auto
quantized_weight_t
=
scope
->
FindVar
(
quantized_weight_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
std
::
vector
<
float
>
weight_scale
;
int
weight_scale_size
;
if
(
op_type_
==
"conv2d"
||
op_type_
==
"depthwise_conv2d"
)
{
op_desc
.
SetInput
(
"Input"
,
{
matched
.
at
(
"quant_op_input"
)
->
arg
()
->
name
});
op_desc
.
SetOutput
(
"Output"
,
{
nodes
[
i
*
kNumFields
+
kDequantOpOutOffset
]
->
arg
()
->
name
});
// Conv weight shape: Cout * Cin * kh * hw, the weight_scale_size should
// be Cout.
weight_scale_size
=
quantized_weight_t
->
dims
()[
0
];
}
else
if
(
op_type_
==
"mul"
)
{
op_desc
.
SetInput
(
"X"
,
{
matched
.
at
(
"quant_op_input"
)
->
arg
()
->
name
});
op_desc
.
SetOutput
(
"Out"
,
{
nodes
[
i
*
kNumFields
+
kDequantOpOutOffset
]
->
arg
()
->
name
});
// Fc weight: Cin * Cout, the weight_scale_size should be Cout.
weight_scale_size
=
quantized_weight_t
->
dims
()[
1
];
}
for
(
int
i
=
0
;
i
<
weight_scale_size
;
i
++
)
{
weight_scale
.
push_back
(
whole_weight_scale
);
}
op_desc
.
SetAttr
(
"enable_int8"
,
true
);
op_desc
.
SetAttr
(
"input_scale"
,
input_scale
);
op_desc
.
SetAttr
(
"weight_scale"
,
weight_scale
);
Tensor
temp_tensor
;
temp_tensor
.
CopyDataFrom
(
*
quantized_weight_t
);
float
*
temp_data
=
temp_tensor
.
mutable_data
<
float
>
();
size_t
weight_num
=
quantized_weight_t
->
data_size
();
int8_t
*
quantized_weight_data
=
quantized_weight_t
->
mutable_data
<
int8_t
>
();
// change the weight from the float type to int8 type.
for
(
size_t
i
=
0
;
i
<
weight_num
;
i
++
)
{
quantized_weight_data
[
i
]
=
static_cast
<
int8_t
>
(
temp_data
[
i
]);
}
quantized_weight_t
->
set_persistable
(
true
);
quantized_weight_t
->
set_precision
(
PRECISION
(
kInt8
));
auto
quantized_op
=
LiteOpRegistry
::
Global
().
Create
(
op_type_
);
quantized_op
->
Attach
(
op_desc
,
scope
);
auto
*
new_op_node
=
graph
->
GraphCreateInstructNode
(
quantized_op
,
valid_places
);
IR_NODE_LINK_TO
(
quant_op_input
,
new_op_node
);
IR_NODE_LINK_TO
(
nodes
[
i
*
kNumFields
+
kQuantizedWeightOffset
],
new_op_node
);
IR_NODE_LINK_TO
(
new_op_node
,
nodes
[
i
*
kNumFields
+
kDequantOpOutOffset
]);
float
input_scale
=
quantized_op
->
stmt
()
->
op_info
()
->
GetAttr
<
float
>
(
"input_scale"
);
float
max_range
=
dequant_op
->
stmt
()
->
op_info
()
->
GetAttr
<
float
>
(
"max_range"
);
float
whole_weight_scale
=
static_cast
<
float
>
(
range
*
range
)
/
max_range
/
range
;
// max_range = range * range / max(abs(weight))
// weight_scale = range * range / (range * range / max(abs(weight))) / range
// = max(abs(weight)) / range
// set op desc
cpp
::
OpDesc
op_desc
=
*
quantized_op
->
stmt
()
->
op_info
();
auto
quantized_weight_var_name
=
quantized_op_weight
->
arg
()
->
name
;
auto
quantized_weight_t
=
scope
->
FindVar
(
quantized_weight_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
std
::
vector
<
float
>
weight_scale
;
int
weight_scale_size
;
if
(
op_type_
==
"conv2d"
||
op_type_
==
"depthwise_conv2d"
)
{
op_desc
.
SetInput
(
"Input"
,
{
quant_op_input
->
arg
()
->
name
});
op_desc
.
SetOutput
(
"Output"
,
{
dequant_op_out
->
arg
()
->
name
});
// Conv weight shape: Cout * Cin * kh * hw, the weight_scale_size should
// be Cout.
weight_scale_size
=
quantized_weight_t
->
dims
()[
0
];
}
else
if
(
op_type_
==
"mul"
)
{
op_desc
.
SetInput
(
"X"
,
{
quant_op_input
->
arg
()
->
name
});
op_desc
.
SetOutput
(
"Out"
,
{
dequant_op_out
->
arg
()
->
name
});
// Fc weight: Cin * Cout, the weight_scale_size should be Cout.
weight_scale_size
=
quantized_weight_t
->
dims
()[
1
];
}
for
(
int
i
=
0
;
i
<
weight_scale_size
;
i
++
)
{
weight_scale
.
push_back
(
whole_weight_scale
);
}
op_desc
.
SetAttr
(
"enable_int8"
,
true
);
op_desc
.
SetAttr
(
"input_scale"
,
input_scale
);
op_desc
.
SetAttr
(
"weight_scale"
,
weight_scale
);
// change the weight from the float type to int8 type.
Tensor
temp_tensor
;
temp_tensor
.
CopyDataFrom
(
*
quantized_weight_t
);
float
*
temp_data
=
temp_tensor
.
mutable_data
<
float
>
();
size_t
weight_num
=
quantized_weight_t
->
data_size
();
int8_t
*
quantized_weight_data
=
quantized_weight_t
->
mutable_data
<
int8_t
>
();
for
(
size_t
i
=
0
;
i
<
weight_num
;
i
++
)
{
quantized_weight_data
[
i
]
=
static_cast
<
int8_t
>
(
temp_data
[
i
]);
}
quantized_weight_t
->
set_persistable
(
true
);
quantized_weight_t
->
set_precision
(
PRECISION
(
kInt8
));
// new op and relink nodes
auto
new_quantized_op
=
LiteOpRegistry
::
Global
().
Create
(
op_type_
);
new_quantized_op
->
Attach
(
op_desc
,
scope
);
auto
*
new_quantized_op_node
=
graph
->
GraphCreateInstructNode
(
new_quantized_op
,
valid_places
);
IR_NODE_LINK_TO
(
quant_op_input
,
new_quantized_op_node
);
IR_NODE_LINK_TO
(
quantized_op_weight
,
new_quantized_op_node
);
IR_NODE_LINK_TO
(
new_quantized_op_node
,
dequant_op_out
);
}
cpp
::
OpDesc
QuantDequantOpFuser
::
GenOpDesc
(
const
key2nodes_t
&
matched
)
{
...
...
lite/core/mir/fusion/quant_dequant_op_fuser.h
浏览文件 @
0260d322
...
...
@@ -37,10 +37,8 @@ namespace fusion {
*/
class
QuantDequantOpFuser
:
public
FuseBase
{
public:
explicit
QuantDequantOpFuser
(
const
std
::
string
&
op_type
,
const
std
::
string
&
quant_type
,
int
times
)
:
op_type_
(
op_type
),
quant_type_
(
quant_type
),
times_
(
times
)
{}
explicit
QuantDequantOpFuser
(
const
std
::
string
&
op_type
)
:
op_type_
(
op_type
)
{}
void
BuildPattern
()
override
;
void
InsertNewNode
(
SSAGraph
*
graph
,
const
key2nodes_t
&
matched
)
override
;
...
...
@@ -48,9 +46,7 @@ class QuantDequantOpFuser : public FuseBase {
cpp
::
OpDesc
GenOpDesc
(
const
key2nodes_t
&
matched
)
override
;
private:
std
::
string
op_type_
{
"conv2d"
};
std
::
string
quant_type_
;
int
times_
;
std
::
string
op_type_
{};
};
}
// namespace fusion
...
...
lite/operators/op_params.h
浏览文件 @
0260d322
...
...
@@ -35,7 +35,8 @@ using param_t = Any;
bool enable_int8{false}; \
float input_scale{1.0}; \
std::vector<float> weight_scale{}; \
float output_scale{1.0};
float output_scale{1.0}; \
int bit_length{8};
/// ----------------------- Functional operators ------------------------------
struct
FeedParam
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录