io.cpp 13.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io.h"
#include <vector>
D
dolphin8 已提交
17
#define PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
18
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
19
#include <algorithm>
D
dolphin8 已提交
20
#include <ctime>
D
dolphin8 已提交
21
#include <unordered_map>
D
dolphin8 已提交
22
#endif
L
liuruilong 已提交
23 24

#include "common/enforce.h"
L
liuruilong 已提交
25
#include "common/log.h"
L
liuruilong 已提交
26
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
27 28
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
29
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
30 31 32 33
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
W
wangliu 已提交
34 35 36 37

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
38 39
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
40 41
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
42 43 44 45 46 47
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
48 49
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
50 51
  fclose(file);
  return data;
W
wangliu 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
79
    const std::string &dirname, bool optimize, bool can_add_split) {
L
liuruilong 已提交
80 81
  auto program =
      this->LoadProgram(dirname + "/__model__", optimize, can_add_split);
L
liuruilong 已提交
82 83 84 85 86
  program.model_path = dirname;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
87 88 89
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &model_path, const std::string &para_path,
    bool optimize) {
L
liuruilong 已提交
90 91 92 93 94 95 96
  auto program = this->LoadProgram(model_path, optimize);
  program.para_path = para_path;
  program.is_commbine = true;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
97
const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
L
liuruilong 已提交
98
    const std::string &model_path, bool optimize, bool can_add_split) {
L
liuruilong 已提交
99
  std::string model_filename = model_path;
W
wangliu 已提交
100 101 102 103 104 105 106
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
L
liuruilong 已提交
107
      NULL, read_size, buf);
W
wangliu 已提交
108
  //
W
wangliu 已提交
109
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
110
  //
W
wangliu 已提交
111
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
112
  //
113
  auto originProgramDesc = std::make_shared<framework::ProgramDesc>(c_program);
W
wangliu 已提交
114 115 116 117

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

118
  auto scope = std::make_shared<framework::Scope>();
W
wangliu 已提交
119 120 121
  program.scope = scope;

  for (const auto &block : originProgramDesc->Blocks()) {
122
    for (auto var_desc : block->Vars()) {
W
wangliu 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
145 146
  //  originProgramDesc->Description("program: ");

L
liuruilong 已提交
147 148
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
149
    program.optimizeProgram =
L
liuruilong 已提交
150
        program_optimize.FushionOptimize(originProgramDesc, can_add_split);
L
liuruilong 已提交
151
  }
L
liuruilong 已提交
152 153 154 155 156 157
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
158 159 160 161 162 163 164 165 166
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;

#pragma mark - executor

template <typename Dtype, Precision P>
L
liuruilong 已提交
167 168
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
169
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
184
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
185 186 187 188 189 190 191 192
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
L
liuruilong 已提交
193 194 195 196 197
  if (program_.is_commbine) {
    InitCombineMemory();
  } else {
    InitMemory();
  }
W
wangliu 已提交
198 199 200 201
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
L
liuruilong 已提交
202
                                    framework::LoDTensor *tensor, char *&data) {
W
wangliu 已提交
203
  // 1. version
L
liuruilong 已提交
204 205
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
206 207

  // 2 Lod information
L
liuruilong 已提交
208 209 210
  uint64_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);

W
wangliu 已提交
211 212 213
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
214 215 216
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
217
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
218 219 220 221 222 223 224

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
225 226 227 228 229 230 231
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
232 233
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
234 235

  // 4. tensor desc
L
liuruilong 已提交
236 237 238
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
239
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
240 241 242 243
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
279 280 281
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }
L
liuruilong 已提交
282
  data += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
283 284 285 286 287 288 289 290 291 292 293 294
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
295

L
liuruilong 已提交
296 297
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
298 299
        char *data = origin_data;
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
300
        delete origin_data;
W
wangliu 已提交
301 302 303 304 305 306 307 308 309 310 311
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
312
template <typename Dtype, Precision P>
L
liuruilong 已提交
313
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
314
  LOG(kLOG_INFO) << " begin init combine memory";
L
liuruilong 已提交
315
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
316
  char *data = origin_data;
L
liuruilong 已提交
317 318 319 320 321 322 323 324
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
325
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
326 327 328 329 330 331 332 333 334
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
335
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
336 337
}

W
wangliu 已提交
338
template <typename Dtype, Precision P>
W
wangliu 已提交
339 340
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
341 342 343 344 345 346
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
347
      to_predict_program_->Block(0);
D
dolphin8 已提交
348
#ifdef PADDLE_MOBILE_PROFILE
349
  std::unordered_map<std::string, clock_t> _profile;
D
dolphin8 已提交
350
#endif
W
wangliu 已提交
351 352
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
D
dolphin8 已提交
353
#ifdef PADDLE_MOBILE_PROFILE
354
    _profile[op->Type()] -= clock();
D
dolphin8 已提交
355
#endif
W
wangliu 已提交
356
    op->Run();
D
dolphin8 已提交
357
#ifdef PADDLE_MOBILE_PROFILE
358
    _profile[op->Type()] += clock();
D
dolphin8 已提交
359
#endif
W
wangliu 已提交
360
  }
D
dolphin8 已提交
361 362
#ifdef PADDLE_MOBILE_PROFILE
  {
D
dolphin8 已提交
363
    std::cout << "====================[ profile ]======================\n";
364 365
    using prof_t = std::pair<std::string, clock_t>;
    std::vector<prof_t> _tprofile(_profile.begin(), _profile.end());
366
    clock_t _ptotal = 0;
D
dolphin8 已提交
367
    for (auto const &p : _tprofile) {
D
dolphin8 已提交
368 369
      _ptotal += p.second;
    }
370 371 372 373
    auto compf = [](const prof_t &a, const prof_t &b) {
      return a.second > b.second;
    };
    std::sort(_tprofile.begin(), _tprofile.end(), compf);
D
dolphin8 已提交
374 375
    _tprofile.push_back(std::make_pair("total", _ptotal));
    for (auto const &p : _tprofile) {
376 377
      printf("%-16s\t%-10.0f\t%-.4f\n", p.first.c_str(), (float)p.second,
             (float)p.second / _ptotal * 100.0);
D
dolphin8 已提交
378
    }
D
dolphin8 已提交
379
    std::cout << "====================[---------]======================\n";
D
dolphin8 已提交
380 381
  }
#endif
W
wangliu 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
  auto ops = ops_of_block_[*to_predict_program_->Block(0)];
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
  return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
396 397 398
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
399
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
400 401
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
402 403 404 405 406 407 408 409
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
410 411 412 413 414
}

template class Executor<CPU, Precision::FP32>;

}  // namespace paddle_mobile