io.cpp 13.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io.h"
#include <vector>
D
dolphin8 已提交
17
#define PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
18 19
#ifdef PADDLE_MOBILE_PROFILE
#include <ctime>
D
dolphin8 已提交
20
#include <unordered_map>
D
dolphin8 已提交
21
#include <map>
D
dolphin8 已提交
22 23
#include <algorithm>
#include <numeric>
D
dolphin8 已提交
24
#endif
L
liuruilong 已提交
25 26

#include "common/enforce.h"
L
liuruilong 已提交
27
#include "common/log.h"
L
liuruilong 已提交
28
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
29 30
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
31
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
32 33 34 35
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
W
wangliu 已提交
36 37 38 39

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
40 41
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
42 43
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
44 45 46 47 48 49
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
50 51
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
52 53
  fclose(file);
  return data;
W
wangliu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
81
    const std::string &dirname, bool optimize) {
L
liuruilong 已提交
82 83 84 85 86 87
  auto program = this->LoadProgram(dirname + "/__model__", optimize);
  program.model_path = dirname;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
88 89 90
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &model_path, const std::string &para_path,
    bool optimize) {
L
liuruilong 已提交
91 92 93 94 95 96 97
  auto program = this->LoadProgram(model_path, optimize);
  program.para_path = para_path;
  program.is_commbine = true;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
98 99
const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
    const std::string &model_path, bool optimize) {
L
liuruilong 已提交
100
  std::string model_filename = model_path;
W
wangliu 已提交
101 102 103 104 105 106 107
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
L
liuruilong 已提交
108
      NULL, read_size, buf);
W
wangliu 已提交
109
  //
W
wangliu 已提交
110
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
111
  //
W
wangliu 已提交
112
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
113
  //
114
  auto originProgramDesc = std::make_shared<framework::ProgramDesc>(c_program);
W
wangliu 已提交
115 116 117 118

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

119
  auto scope = std::make_shared<framework::Scope>();
W
wangliu 已提交
120 121 122
  program.scope = scope;

  for (const auto &block : originProgramDesc->Blocks()) {
123
    for (auto var_desc : block->Vars()) {
W
wangliu 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
146 147
  //  originProgramDesc->Description("program: ");

L
liuruilong 已提交
148 149
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
150
    program.optimizeProgram =
L
liuruilong 已提交
151
        program_optimize.FushionOptimize(originProgramDesc);
L
liuruilong 已提交
152
  }
L
liuruilong 已提交
153 154 155 156 157 158
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
159 160 161 162 163 164 165 166 167
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;

#pragma mark - executor

template <typename Dtype, Precision P>
L
liuruilong 已提交
168 169
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
170
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
185
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
186 187 188 189 190 191 192 193
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
L
liuruilong 已提交
194 195 196 197 198
  if (program_.is_commbine) {
    InitCombineMemory();
  } else {
    InitMemory();
  }
W
wangliu 已提交
199 200 201 202
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
L
liuruilong 已提交
203
                                    framework::LoDTensor *tensor, char *&data) {
W
wangliu 已提交
204
  // 1. version
L
liuruilong 已提交
205 206
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
207 208

  // 2 Lod information
L
liuruilong 已提交
209 210 211
  uint64_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);

W
wangliu 已提交
212 213 214
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
215 216 217
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
218
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
219 220 221 222 223 224 225

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
226 227 228 229 230 231 232
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
233 234
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
235 236

  // 4. tensor desc
L
liuruilong 已提交
237 238 239
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
240
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
241 242 243 244
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
280 281 282
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }
L
liuruilong 已提交
283
  data += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
284 285 286 287 288 289 290 291 292 293 294 295
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
296

L
liuruilong 已提交
297 298
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
299 300
        char *data = origin_data;
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
301
        delete origin_data;
W
wangliu 已提交
302 303 304 305 306 307 308 309 310 311 312
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
313
template <typename Dtype, Precision P>
L
liuruilong 已提交
314
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
315
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
316
  char *data = origin_data;
L
liuruilong 已提交
317 318 319 320 321 322 323 324
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
325
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
326 327 328 329 330 331 332 333 334 335 336
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
}

W
wangliu 已提交
337
template <typename Dtype, Precision P>
W
wangliu 已提交
338 339
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
340 341 342 343 344 345
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
346
      to_predict_program_->Block(0);
D
dolphin8 已提交
347 348 349
#ifdef PADDLE_MOBILE_PROFILE
  std::map<std::string, clock_t> _profile;
#endif
W
wangliu 已提交
350 351
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
D
dolphin8 已提交
352
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
353
    clock_t _tic = clock();
D
dolphin8 已提交
354
#endif
W
wangliu 已提交
355
    op->Run();
D
dolphin8 已提交
356
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
357
    _profile[op->Type()] += clock() - _tic;
D
dolphin8 已提交
358
#endif
W
wangliu 已提交
359
  }
D
dolphin8 已提交
360 361
#ifdef PADDLE_MOBILE_PROFILE
  {
D
dolphin8 已提交
362 363 364 365
    std::cout << "========================[ profile ]==========================\n";
    std::vector<std::pair<std::string, clock_t>> _tprofile(_profile.begin(), _profile.end());
    clock_t _ptotal;
    for (auto const& p : _tprofile) {
D
dolphin8 已提交
366 367
      _ptotal += p.second;
    }
D
dolphin8 已提交
368 369 370 371 372 373 374 375
    std::sort(_tprofile.begin(), _tprofile.end(), [](auto& a, auto& b) {
      return a.second > b.second;
    });
    _tprofile.push_back(std::make_pair("total", _ptotal));
    for (auto const &p : _tprofile) {
      std::cout << p.first << std::string(16 - p.first.size(), ' ') << "\t"
           << p.second << "\t\t"
           << (float)p.second / _ptotal * 100.0 << "\n";
D
dolphin8 已提交
376
    }
D
dolphin8 已提交
377
    std::cout << "========================[---------]==========================\n";
D
dolphin8 已提交
378 379
  }
#endif
W
wangliu 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393
  auto ops = ops_of_block_[*to_predict_program_->Block(0)];
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
  return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
394 395 396
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
397
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
398 399
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
400 401 402 403 404 405 406 407
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
408 409 410 411 412
}

template class Executor<CPU, Precision::FP32>;

}  // namespace paddle_mobile