io.cpp 14.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io.h"
#include <vector>
L
liuruilong 已提交
17 18

#include "common/enforce.h"
L
liuruilong 已提交
19
#include "common/log.h"
L
liuruilong 已提交
20
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
21 22
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
23
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
24 25 26 27
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
W
wangliu 已提交
28 29 30 31

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
32 33
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
34 35
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
36 37 38 39 40 41
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
42 43
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
44 45
  fclose(file);
  return data;
W
wangliu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
void Loader<Dtype, P>::LoadVar(framework::Variable *variable,
                               const framework::VarDesc &var_desc,
                               const std::string &file_path) {
  auto tensor = variable->GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
76
  char *data = Get_binary_data(file_path);
W
wangliu 已提交
77 78

  // 1. version
L
liuruilong 已提交
79 80
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
81 82

  // 2 Lod information
L
liuruilong 已提交
83 84 85
  uint32_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);

W
wangliu 已提交
86 87 88
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
89 90 91
    uint32_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);

W
wangliu 已提交
92
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
93 94 95

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
W
wangliu 已提交
96 97 98 99 100
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
101 102 103
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);

W
wangliu 已提交
104
  // 4. tensor desc
L
liuruilong 已提交
105 106 107
  uint32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
108
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
109 110 111 112

  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
W
wangliu 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

  const framework::TensorDesc &desc = var_desc.Tensor_desc();

  PaddleMobile__Framework__Proto__VarType__TensorDesc *tensor_desc = NULL;

  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
151 152 153 154 155
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }

  delete data;
W
wangliu 已提交
156 157 158 159
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
160
    const std::string &dirname, bool optimize) {
L
liuruilong 已提交
161 162 163 164 165 166
  auto program = this->LoadProgram(dirname + "/__model__", optimize);
  program.model_path = dirname;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
167 168 169
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &model_path, const std::string &para_path,
    bool optimize) {
L
liuruilong 已提交
170 171 172 173 174 175 176
  auto program = this->LoadProgram(model_path, optimize);
  program.para_path = para_path;
  program.is_commbine = true;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
177 178
const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
    const std::string &model_path, bool optimize) {
L
liuruilong 已提交
179
  std::string model_filename = model_path;
W
wangliu 已提交
180 181 182 183 184 185 186
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
L
liuruilong 已提交
187
      NULL, read_size, buf);
W
wangliu 已提交
188
  //
W
wangliu 已提交
189
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
190
  //
W
wangliu 已提交
191
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
192
  //
193
  auto originProgramDesc = std::make_shared<framework::ProgramDesc>(c_program);
W
wangliu 已提交
194 195 196 197

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

198
  auto scope = std::make_shared<framework::Scope>();
W
wangliu 已提交
199 200 201
  program.scope = scope;

  for (const auto &block : originProgramDesc->Blocks()) {
202
    for (auto var_desc : block->Vars()) {
W
wangliu 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
225 226
  //  originProgramDesc->Description("program: ");

L
liuruilong 已提交
227 228
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
229
    program.optimizeProgram =
L
liuruilong 已提交
230
        program_optimize.FushionOptimize(originProgramDesc);
L
liuruilong 已提交
231
  }
L
liuruilong 已提交
232 233 234 235 236 237
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
238 239 240 241 242 243 244 245 246
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;

#pragma mark - executor

template <typename Dtype, Precision P>
L
liuruilong 已提交
247 248
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
249
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
264
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
265 266 267 268 269 270 271 272
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
L
liuruilong 已提交
273 274 275 276 277
  if (program_.is_commbine) {
    InitCombineMemory();
  } else {
    InitMemory();
  }
W
wangliu 已提交
278 279 280 281 282
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
                                    framework::LoDTensor *tensor,
L
liuruilong 已提交
283
                                    const std::string &file_path, char *data) {
W
wangliu 已提交
284
  // 1. version
L
liuruilong 已提交
285 286 287
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
  DLOG << "version: " << version;
W
wangliu 已提交
288 289

  // 2 Lod information
L
liuruilong 已提交
290 291 292 293
  uint64_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);
  DLOG << "lod_level: " << lod_level;

W
wangliu 已提交
294 295 296
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
297 298 299 300
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;

W
wangliu 已提交
301
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
302 303 304 305 306 307 308

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
309 310 311 312 313 314 315
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
316 317 318
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
  DLOG << "tensor_version: " << tensor_version;
W
wangliu 已提交
319 320

  // 4. tensor desc
L
liuruilong 已提交
321 322 323 324
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);
  DLOG << "tensor desc size: " << size;

W
wangliu 已提交
325
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
326 327 328 329
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
L
liuruilong 已提交
347
      DLOG << " type size: " << type_size;
W
wangliu 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
366 367 368
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }
L
liuruilong 已提交
369
  data += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
370 371 372 373 374 375 376 377 378 379 380 381
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
382

L
liuruilong 已提交
383 384
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
W
wangliu 已提交
385
        LoadMemory(*var_desc, tensor,
L
liuruilong 已提交
386 387
                   program_.model_path + "/" + var_desc->Name(), origin_data);
        delete origin_data;
W
wangliu 已提交
388 389 390 391 392 393 394 395 396 397 398
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
399
template <typename Dtype, Precision P>
L
liuruilong 已提交
400
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
  char *origin_data = Get_binary_data(program_.para_path);

  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
        LoadMemory(*var_desc, tensor,
                   program_.model_path + "/" + var_desc->Name(), origin_data);
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }

  delete origin_data;
}

W
wangliu 已提交
426
template <typename Dtype, Precision P>
W
wangliu 已提交
427 428
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
429 430 431 432 433 434
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
435
      to_predict_program_->Block(0);
W
wangliu 已提交
436 437 438 439
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
    op->Run();
  }
W
wangliu 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453
  auto ops = ops_of_block_[*to_predict_program_->Block(0)];
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
  return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
454 455 456
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
457
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
458 459
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
460 461 462 463 464 465 466 467
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
468 469 470 471 472
}

template class Executor<CPU, Precision::FP32>;

}  // namespace paddle_mobile