depthwise_conv3x3.cpp 82.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
H
hjchen2 已提交
14 15 16

#include "operators/math/depthwise_conv3x3.h"
#include <vector>
17
#if __ARM_NEON
E
eclipsess 已提交
18
#include <arm_neon.h>
L
liuruilong 已提交
19
#endif
W
wangliu 已提交
20 21 22 23

namespace paddle_mobile {
namespace operators {
namespace math {
H
hjchen2 已提交
24 25 26 27 28 29

void DepthwiseConv3x3(const framework::Tensor *input,
                      const std::vector<int> &strides,
                      const std::vector<int> &paddings,
                      const framework::Tensor *filter, framework::Tensor *bias,
                      framework::Tensor *output, bool if_bias) {
W
wangliu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  const int _kernel_size = 3;
  const int stride_height = strides[0];
  const int stride_width = strides[1];
  const int padding_height = paddings[0];
  const int padding_width = paddings[1];
  const float zero = 0;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;
  const int filter_channel_stride = 9;

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  if (if_bias) {
    math::expand_bias(*bias, 1, output->dims());
    output->ShareDataWith(*bias);
  }
  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  const int filter_batch_stride = output_channels * output_channel_stride;
  const float *pos1, *pos2, *pos3, *filter1, *filter2, *filter3, *output_ptr;
  int hstart, wstart, hend, wend;
  float result;
  for (int i = 0; i < batch_size; ++i) {
    for (int c = 0; c < output_channels; ++c) {
      filter1 = filter_data;
      filter2 = filter1 + 3;
      filter3 = filter2 + 3;

      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
          hstart = ph * stride_height - padding_height;
          wstart = pw * stride_width - padding_width;
H
hjchen2 已提交
74 75 76 77 78 79
          hend = std::min(hstart + _kernel_size, input_height + padding_height);
          wend = std::min(wstart + _kernel_size, input_width + padding_width);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          hend = std::min(hend, input_height);
          wend = std::min(wend, input_width);
W
wangliu 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
          pos1 = input_data + hstart * input_width + wstart;
          pos2 = input_data + (hstart + 1) * input_width + wstart;
          pos3 = input_data + (hstart + 2) * input_width + wstart;
          output_ptr = output_data + ph * output_width + pw;

          if (hend - hstart != 3 || wend - wstart != 3) {
            result = 0;
            float fake_input[9] = {0};
            if (hstart == 0 && wstart == 0) {
              // 左上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k -
                                   (3 - wend)];
                  }
                }
              }
            } else if (hstart == 0 && wend == input_width) {
              // 右上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height && wstart == 0) {
              // 左下角

              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - 1 - hstart && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k - (3 - wend)];
                  }
                }
              }
            } else if (hend == input_height && wend == input_width) {
              // 右下角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1 &&
                      k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            } else if (hstart == 0) {
              // 顶部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height) {
              // 底部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }

            } else if (wstart == 0) {
              // 左侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width +
                                   (k - (3 - wend))];
                  }
                }
              }

            } else if (wend == input_width) {
              // 右侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            }
            for (int l = 0; l < 9; ++l) {
              result += fake_input[l] * filter1[l];
            }
            if (if_bias) {
              output_data[ph * output_width + pw] += result;
            } else {
              output_data[ph * output_width + pw] = result;
            }

          } else {
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
#if __ARM_NEON
#if __aarch64__
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);

            const float32x4_t v_filter1 = vld1q_f32(filter1);
            const float32x4_t v_filter2 = vld1q_f32(filter2);
            const float32x4_t v_filter3 = vld1q_f32(filter3);
            float32x4_t mula = vmulq_f32(data1, v_filter1);
            mula = vmlaq_f32(mula, data2, v_filter2);
            mula = vmlaq_f32(mula, data3, v_filter3);
            float32x2_t res = vpadd_f32(
                vget_high_f32(vsetq_lane_f32(0, mula, 3)), vget_low_f32(mula));
            res = vpadd_f32(res, res);
            if (if_bias) {
              output_data[ph * output_width + pw] += vget_lane_f32(res, 0);
            } else {
              output_data[ph * output_width + pw] = vget_lane_f32(res, 0);
            }
#else
W
wangliu 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            asm volatile(

                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q4}, [%[filter1]]        \n\t"
                "vmov.f32 q0,    #0.0              \n\t"

                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q5}, [%[filter2]]        \n\t"
                "vmla.f32 q0, q1, q4           \n\t"

                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vld1.32  {q6}, [%[filter3]]        \n\t"

                "vmla.f32 q0, q2, q5           \n\t"
                "vmla.f32 q0, q3, q6          \n\t"

                "vmov.f32 d1[1],  %[zero]         \n\t"

                "vadd.f32  d4, d0, d1           \n\t"
                "vadd.f32  s10, s8, s9            \n\t"
                "vst1.32 {d5[0]},[%[output_ptr]]    \n\t"
                :
                : [input_data] "r"(input_data), [pos1] "r"(pos1),
                  [pos2] "r"(pos2), [pos3] "r"(pos3), [filter1] "r"(filter1),
                  [filter2] "r"(filter2), [filter3] "r"(filter3),
                  [output_ptr] "r"(output_ptr), [zero] "r"(zero)
                : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6");
235
#endif  // __aarch64__
W
wangliu 已提交
236 237
#else

238
#endif  // __ARM_NEON
W
wangliu 已提交
239 240 241 242 243 244 245 246 247 248 249 250
          }
        }
      }
      input_data += input_channel_stride;
      output_data += output_channel_stride;
      filter_data += filter_channel_stride;
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
}

H
hjchen2 已提交
251 252 253
void DepthwiseConv3x3s1p1(const framework::Tensor *input,
                          const framework::Tensor *filter,
                          framework::Tensor *output, framework::Tensor *bias,
254
                          bool if_bias, bool if_relu) {
255
#if __ARM_NEON
W
wangliu 已提交
256 257
  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
258
  float *output_data = output->mutable_data<float>();
259 260 261 262
  const float *bias_data;
  if (if_bias) {
    bias_data = bias->data<float>();
  }
W
wangliu 已提交
263 264 265

  const int h = static_cast<int>(input->dims()[2]);
  const int w = static_cast<int>(input->dims()[3]);
E
eclipsess 已提交
266
  //  const int l = h;
W
wangliu 已提交
267 268 269 270
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const int hxw = h * w;
  float32x4_t vbias = vdupq_n_f32(0.0);
271 272 273 274 275 276 277 278 279

  // leftTop, rightTop, leftBottom, rightBottom
  int lt = 0;
  int rt = w - 1;
  int lb = (h - 1) * w;
  int rb = h * w - 1;

  float32x4_t zero = vdupq_n_f32(0.0);

W
wangliu 已提交
280 281 282 283 284 285 286 287
  for (int b = 0; b < batch_size; ++b) {
    const float *filter_data_tmp = filter_data;

    for (int j = 0; j < c; ++j) {
      if (if_bias) {
        vbias = vdupq_n_f32(bias_data[j]);
      }

E
eclipsess 已提交
288
      int w_mid = w - 2;  // l=1->l_mid=-1,l=2->l_mid=0
W
wangliu 已提交
289 290 291 292 293 294 295 296 297 298
      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

299 300 301 302 303 304
      output_data[lt] = w11 * input_data[0] + w12 * input_data[1] +
                        w21 * input_data[w] + w22 * input_data[w + 1];
      output_data[rt] = w10 * input_data[w - 2] + w11 * input_data[w - 1] +
                        w20 * input_data[2 * w - 2] +
                        w21 * input_data[2 * w - 1];
      output_data[lb] =
E
eclipsess 已提交
305 306
          w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w + 1] +
          w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
307
      output_data[rb] =
E
eclipsess 已提交
308 309
          w00 * input_data[h * w - w - 2] + w01 * input_data[h * w - w - 1] +
          w10 * input_data[h * w - 2] + w11 * input_data[h * w - 1];
E
eclipsess 已提交
310
      if (if_bias) {
311 312 313 314 315 316 317 318 319 320
        output_data[lt] += bias_data[j];
        output_data[rt] += bias_data[j];
        output_data[lb] += bias_data[j];
        output_data[rb] += bias_data[j];
      }
      if (if_relu) {
        output_data[lt] = output_data[lt] < 0 ? 0 : output_data[lt];
        output_data[rt] = output_data[rt] < 0 ? 0 : output_data[rt];
        output_data[lb] = output_data[lb] < 0 ? 0 : output_data[lb];
        output_data[rb] = output_data[rb] < 0 ? 0 : output_data[rb];
E
eclipsess 已提交
321
      }
W
wangliu 已提交
322

E
eclipsess 已提交
323
      for (int i = 1; i < h - 1; ++i) {
324 325 326
        int left = i * w;
        int right = i * w + w - 1;
        output_data[left] =
E
eclipsess 已提交
327
            w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1] +
E
eclipsess 已提交
328
            w11 * input_data[i * w] + w12 * input_data[i * w + 1] +
E
eclipsess 已提交
329 330
            w21 * input_data[i * w + w] + w22 * input_data[i * w + w + 1];

331 332 333 334 335 336
        output_data[right] = w00 * input_data[i * w + w - 1 - w - 1] +
                             w01 * input_data[i * w + w - 1 - w] +
                             w10 * input_data[i * w + w - 1 - 1] +
                             w11 * input_data[i * w + w - 1] +
                             w20 * input_data[i * w + w - 1 + w - 1] +
                             w21 * input_data[i * w + w - 1 + w];
E
eclipsess 已提交
337
        if (if_bias) {
338 339 340 341 342 343
          output_data[left] += bias_data[j];
          output_data[right] += bias_data[j];
        }
        if (if_relu) {
          output_data[left] = output_data[left] < 0 ? 0 : output_data[left];
          output_data[right] = output_data[right] < 0 ? 0 : output_data[right];
E
eclipsess 已提交
344
        }
W
wangliu 已提交
345 346 347 348 349 350 351 352
      }

      // top 1 row and bottom 1 row
      const float *input_tmp = input_data;

      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
          tmp3, tmp4, tmp5, out0;
      in0 = vld1q_f32(input_tmp);
E
eclipsess 已提交
353 354
      in2 = vld1q_f32(input_tmp + w);
      const float *input_tmp_end = input_tmp + (h - 2) * w;
W
wangliu 已提交
355
      in4 = vld1q_f32(input_tmp_end);
E
eclipsess 已提交
356 357
      in6 = vld1q_f32(input_tmp_end + w);
      int c_mid = w_mid;
W
wangliu 已提交
358 359 360
      auto output_ptr = output_data + 1;
      for (; c_mid > 3; c_mid -= 4) {
        in1 = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
361
        in3 = vld1q_f32(input_tmp + w + 4);
W
wangliu 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375

        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);

        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);

        out0 = vmulq_n_f32(in0, w10);
        out0 = vmlaq_n_f32(out0, tmp0, w11);
        out0 = vmlaq_n_f32(out0, tmp1, w12);
        out0 = vmlaq_n_f32(out0, in2, w20);
        out0 = vmlaq_n_f32(out0, tmp2, w21);
        out0 = vmlaq_n_f32(out0, tmp3, w22);
        out0 = vaddq_f32(out0, vbias);
376 377 378
        if (if_relu) {
          out0 = vmaxq_f32(out0, zero);
        }
W
wangliu 已提交
379 380 381
        vst1q_f32(output_ptr, out0);

        in5 = vld1q_f32(input_tmp_end + 4);
E
eclipsess 已提交
382
        in7 = vld1q_f32(input_tmp_end + w + 4);
W
wangliu 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395

        tmp0 = vextq_f32(in4, in5, 1);
        tmp1 = vextq_f32(in4, in5, 2);
        tmp2 = vextq_f32(in6, in7, 1);
        tmp3 = vextq_f32(in6, in7, 2);

        out0 = vmulq_n_f32(in4, w00);
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
        out0 = vmlaq_n_f32(out0, in6, w10);
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vaddq_f32(out0, vbias);
396 397 398
        if (if_relu) {
          out0 = vmaxq_f32(out0, zero);
        }
E
eclipsess 已提交
399
        vst1q_f32(output_ptr + (h - 1) * w, out0);
W
wangliu 已提交
400 401 402 403 404 405 406 407 408 409 410 411

        // can optimize to each 8 stride.
        input_tmp += 4;
        input_tmp_end += 4;
        output_ptr += 4;
        in0 = in1;
        in2 = in3;
        in4 = in5;
        in6 = in7;
      }

      // top right pad
E
eclipsess 已提交
412 413
      float32x4_t pad0 = vdupq_n_f32(input_data[w - 1]);
      float32x4_t pad1 = vdupq_n_f32(input_data[2 * w - 1]);
W
wangliu 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426

      tmp0 = vextq_f32(in0, pad0, 1);
      tmp1 = vextq_f32(in0, pad0, 2);
      tmp2 = vextq_f32(in2, pad1, 1);
      tmp3 = vextq_f32(in2, pad1, 2);

      out0 = vmulq_n_f32(in0, w10);
      out0 = vmlaq_n_f32(out0, tmp0, w11);
      out0 = vmlaq_n_f32(out0, tmp1, w12);
      out0 = vmlaq_n_f32(out0, in2, w20);
      out0 = vmlaq_n_f32(out0, tmp2, w21);
      out0 = vmlaq_n_f32(out0, tmp3, w22);
      out0 = vaddq_f32(out0, vbias);
427 428 429
      if (if_relu) {
        out0 = vmaxq_f32(out0, zero);
      }
W
wangliu 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + i, out0, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + i, out0, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + i, out0, 2);
        }
      }

      // bottom right pad
E
eclipsess 已提交
444 445
      float32x4_t pad2 = vdupq_n_f32(input_data[h * w - 1 - w]);
      float32x4_t pad3 = vdupq_n_f32(input_data[h * w - 1]);
W
wangliu 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458

      tmp0 = vextq_f32(in4, pad2, 1);
      tmp1 = vextq_f32(in4, pad2, 2);
      tmp2 = vextq_f32(in6, pad3, 1);
      tmp3 = vextq_f32(in6, pad3, 2);

      out0 = vmulq_n_f32(in4, w00);
      out0 = vmlaq_n_f32(out0, tmp0, w01);
      out0 = vmlaq_n_f32(out0, tmp1, w02);
      out0 = vmlaq_n_f32(out0, in6, w10);
      out0 = vmlaq_n_f32(out0, tmp2, w11);
      out0 = vmlaq_n_f32(out0, tmp3, w12);
      out0 = vaddq_f32(out0, vbias);
459 460 461
      if (if_relu) {
        out0 = vmaxq_f32(out0, zero);
      }
W
wangliu 已提交
462 463 464

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
E
eclipsess 已提交
465
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 0);
W
wangliu 已提交
466 467
        }
        if (i == 1) {
E
eclipsess 已提交
468
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 1);
W
wangliu 已提交
469 470
        }
        if (i == 2) {
E
eclipsess 已提交
471
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 2);
W
wangliu 已提交
472 473 474 475
        }
      }
      // mid

E
eclipsess 已提交
476 477 478
      for (int i = 0; i < h - 2; ++i) {
        auto output_ptr = output_data + (i + 1) * w + 1;
        input_tmp = input_data + i * w;
W
wangliu 已提交
479
        auto in0_tmp = vld1q_f32(input_tmp);
E
eclipsess 已提交
480 481 482
        auto in2_tmp = vld1q_f32(input_tmp + w);
        auto in4_tmp = vld1q_f32(input_tmp + w + w);
        c_mid = w_mid;
W
wangliu 已提交
483 484
        for (; c_mid > 3; c_mid -= 4) {
          auto in1_tmp = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
485 486
          auto in3_tmp = vld1q_f32(input_tmp + w + 4);
          auto in5_tmp = vld1q_f32(input_tmp + w + w + 4);
W
wangliu 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

          tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
          tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
          tmp2 = vextq_f32(in2_tmp, in3_tmp, 1);
          tmp3 = vextq_f32(in2_tmp, in3_tmp, 2);
          tmp4 = vextq_f32(in4_tmp, in5_tmp, 1);
          tmp5 = vextq_f32(in4_tmp, in5_tmp, 2);

          out0 = vmulq_n_f32(in0_tmp, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2_tmp, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4_tmp, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);
          out0 = vaddq_f32(out0, vbias);
505 506 507
          if (if_relu) {
            out0 = vmaxq_f32(out0, zero);
          }
W
wangliu 已提交
508 509 510 511 512 513 514 515 516 517

          vst1q_f32(output_ptr, out0);

          output_ptr += 4;
          input_tmp += 4;
          in0_tmp = in1_tmp;
          in2_tmp = in3_tmp;
          in4_tmp = in5_tmp;
        }

E
eclipsess 已提交
518 519 520
        float32x4_t pad0 = vdupq_n_f32(input_data[i * w + w - 1]);
        float32x4_t pad1 = vdupq_n_f32(input_data[i * w + w - 1 + w]);
        float32x4_t pad2 = vdupq_n_f32(input_data[i * w + w - 1 + w + w]);
W
wangliu 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

        tmp0 = vextq_f32(in0_tmp, pad0, 1);
        tmp1 = vextq_f32(in0_tmp, pad0, 2);
        tmp2 = vextq_f32(in2_tmp, pad1, 1);
        tmp3 = vextq_f32(in2_tmp, pad1, 2);
        tmp4 = vextq_f32(in4_tmp, pad2, 1);
        tmp5 = vextq_f32(in4_tmp, pad2, 2);

        out0 = vmulq_n_f32(in0_tmp, w00);
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
        out0 = vmlaq_n_f32(out0, in2_tmp, w10);
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vmlaq_n_f32(out0, in4_tmp, w20);
        out0 = vmlaq_n_f32(out0, tmp4, w21);
        out0 = vmlaq_n_f32(out0, tmp5, w22);
        out0 = vaddq_f32(out0, vbias);
539 540 541
        if (if_relu) {
          out0 = vmaxq_f32(out0, zero);
        }
W
wangliu 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

        for (int i = 0; i < c_mid; ++i) {
          if (i == 0) {
            vst1q_lane_f32(output_ptr + i, out0, 0);
          }
          if (i == 1) {
            vst1q_lane_f32(output_ptr + i, out0, 1);
          }
          if (i == 2) {
            vst1q_lane_f32(output_ptr + i, out0, 2);
          }
        }
      }
      output_data += hxw;
      input_data += hxw;
      filter_data_tmp += 9;
    }
  }
L
liuruilong 已提交
560
#endif
W
wangliu 已提交
561
}
E
eclipsess 已提交
562

H
hjchen2 已提交
563 564 565 566 567 568
void DepthwiseConvAddBNRelu3x3s1p1(const framework::Tensor *input,
                                   const framework::Tensor *filter,
                                   framework::Tensor *output,
                                   const framework::Tensor *new_scale,
                                   const framework::Tensor *new_bias,
                                   bool if_relu) {
569
#if __ARM_NEON
E
eclipsess 已提交
570
  const float *input_data = input->data<float>();
E
eclipsess 已提交
571
  const float *filter_data = filter->data<float>();
E
eclipsess 已提交
572 573 574 575 576
  float *output_data = output->data<float>();
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const int batch_size = static_cast<int>(input->dims()[0]);
577 578 579 580 581 582 583 584 585
  const int input_channel = static_cast<int>(input->dims()[1]);

  const int input_height = static_cast<int>(input->dims()[2]);
  const int input_width = static_cast<int>(input->dims()[3]);
  const int output_height = static_cast<int>(output->dims()[2]);
  const int output_width = static_cast<int>(output->dims()[3]);

  const int hxw = input_height * input_width;

E
eclipsess 已提交
586 587 588
  //  const int l = input_height;
  const int h = input_height;
  const int w = input_width;
E
eclipsess 已提交
589 590
  float32x4_t vzero = vdupq_n_f32(0);

591
  for (int b = 0; b < batch_size; b++) {
592
#pragma omp parallel for
593
    for (int c = 0; c < input_channel; c++) {
594 595 596 597 598
      const float *filter_data = filter->data<float>() + c * 9;
      const float *input_data = input->data<float>() + c * hxw;
      float *output_data = output->data<float>() + c * hxw;
      float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
      float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
599 600 601 602 603 604 605 606 607 608

      float w00 = filter_data[0];
      float w01 = filter_data[1];
      float w02 = filter_data[2];
      float w10 = filter_data[3];
      float w11 = filter_data[4];
      float w12 = filter_data[5];
      float w20 = filter_data[6];
      float w21 = filter_data[7];
      float w22 = filter_data[8];
E
eclipsess 已提交
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
      for (int i = 1; i < output_height - 1; i++) {
        float *output_ptr;
        float32x4_t in0, in1, in2, in3, in4, in5, tmp0, tmp1, tmp2, tmp3, tmp4,
            tmp5, out0;
        for (int m = 1; m < output_width - 4; m += 4) {
          output_ptr = output_data + i * output_width + m;
          in0 = vld1q_f32(input_data + (i - 1) * input_width + m - 1);
          in1 = vld1q_f32(input_data + (i - 1) * input_width + m + 3);
          in2 = vld1q_f32(input_data + i * input_width + m - 1);
          in3 = vld1q_f32(input_data + i * input_width + m + 3);
          in4 = vld1q_f32(input_data + (i + 1) * input_width + m - 1);
          in5 = vld1q_f32(input_data + (i + 1) * input_width + m + 3);

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

          out0 = vmulq_n_f32(in0, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);

          out0 = vmlaq_f32(vnewbias, vnewscale, out0);
          if (if_relu) {
            out0 = vmaxq_f32(out0, vzero);
          }
          vst1q_f32(output_ptr, out0);
        }
        int m;
        for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
        }

        for (int j = m; j < output_width - 1; j++) {
          output_data[i * output_width + j] =
              input_data[(i - 1) * input_width + j - 1] * w00 +
              input_data[(i - 1) * input_width + j] * w01 +
              input_data[(i - 1) * input_width + j + 1] * w02 +
              input_data[(i)*input_width + j - 1] * w10 +
              input_data[(i)*input_width + j] * w11 +
              input_data[(i)*input_width + j + 1] * w12 +
              input_data[(i + 1) * input_width + j - 1] * w20 +
              input_data[(i + 1) * input_width + j] * w21 +
              input_data[(i + 1) * input_width + j + 1] * w22;
          output_data[i * output_width + j] =
              newscale_data[c] * output_data[i * output_width + j] +
              newbias_data[c];
          if (if_relu) {
            output_data[i * output_width + j] =
                output_data[i * output_width + j] < 0
                    ? 0
                    : output_data[i * output_width + j];
          }
        }
      }

E
eclipsess 已提交
673
      output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
E
eclipsess 已提交
674 675 676 677 678 679 680 681 682 683
                       w21 * input_data[w] + w22 * input_data[w + 1];
      output_data[w - 1] = w10 * input_data[w - 2] + w11 * input_data[w - 1] +
                           w20 * input_data[2 * w - 2] +
                           w21 * input_data[2 * w - 1];
      output_data[(h - 1) * w] =
          w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w + 1] +
          w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
      output_data[h * w - 1] =
          w00 * input_data[h * w - w - 2] + w01 * input_data[h * w - w - 1] +
          w10 * input_data[h * w - 2] + w11 * input_data[h * w - 1];
684
      output_data[0] = output_data[0] * newscale_data[c] + newbias_data[c];
E
eclipsess 已提交
685 686 687 688 689 690
      output_data[w - 1] =
          output_data[w - 1] * newscale_data[c] + newbias_data[c];
      output_data[(h - 1) * w] =
          output_data[(h - 1) * w] * newscale_data[c] + newbias_data[c];
      output_data[h * w - 1] =
          output_data[h * w - 1] * newscale_data[c] + newbias_data[c];
691

E
eclipsess 已提交
692 693
      if (if_relu) {
        output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
E
eclipsess 已提交
694 695 696 697 698
        output_data[w - 1] = output_data[w - 1] < 0 ? 0 : output_data[w - 1];
        output_data[(h - 1) * w] =
            output_data[(h - 1) * w] < 0 ? 0 : output_data[(h - 1) * w];
        output_data[h * w - 1] =
            output_data[h * w - 1] < 0 ? 0 : output_data[h * w - 1];
E
eclipsess 已提交
699
      }
E
eclipsess 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
      for (int i = 1; i < h - 1; ++i) {
        output_data[i * w] =
            w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1] +
            w11 * input_data[i * w] + w12 * input_data[i * w + 1] +
            w21 * input_data[i * w + w] + w22 * input_data[i * w + w + 1];

        output_data[i * w + w - 1] = w00 * input_data[i * w + w - 1 - w - 1] +
                                     w01 * input_data[i * w + w - 1 - w] +
                                     w10 * input_data[i * w + w - 1 - 1] +
                                     w11 * input_data[i * w + w - 1] +
                                     w20 * input_data[i * w + w - 1 + w - 1] +
                                     w21 * input_data[i * w + w - 1 + w];
        output_data[i * w] =
            output_data[i * w] * newscale_data[c] + newbias_data[c];
        output_data[i * w + w - 1] =
            output_data[i * w + w - 1] * newscale_data[c] + newbias_data[c];
716

E
eclipsess 已提交
717
        if (if_relu) {
E
eclipsess 已提交
718 719 720
          output_data[i * w] = output_data[i * w] < 0 ? 0 : output_data[i * w];
          output_data[i * w + w - 1] =
              output_data[i * w + w - 1] < 0 ? 0 : output_data[i * w + w - 1];
E
eclipsess 已提交
721 722 723
        }
      }

724 725 726 727 728 729 730 731
      int m;
      for (m = 1; m < output_width - 4; m += 4) {
        float *output_ptr = output_data + m;
        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + m - 1);
        in1 = vld1q_f32(input_data + m + 3);
        in2 = vld1q_f32(input_data + input_width + m - 1);
        in3 = vld1q_f32(input_data + input_width + m + 3);
E
eclipsess 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = vmulq_n_f32(in0, w10);
        out0 = vmlaq_n_f32(out0, tmp0, w11);
        out0 = vmlaq_n_f32(out0, tmp1, w12);
        out0 = vmlaq_n_f32(out0, in2, w20);
        out0 = vmlaq_n_f32(out0, tmp2, w21);
        out0 = vmlaq_n_f32(out0, tmp3, w22);
        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
        if (if_relu) {
          out0 = vmaxq_f32(out0, vzero);
        }
        vst1q_f32(output_ptr, out0);
747
      }
748 749

      for (m = 1; (m + 3) < output_width - 1; m += 4) {
750 751 752 753 754 755 756 757
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[j] = input_data[j - 1] * w10 + input_data[j] * w11 +
                         input_data[j + 1] * w12 +
                         input_data[input_width + j - 1] * w20 +
                         input_data[input_width + j] * w21 +
                         input_data[input_width + j + 1] * w22;
        output_data[j] = output_data[j] * newscale_data[c] + newbias_data[c];
E
eclipsess 已提交
758

759 760 761 762
        if (if_relu) {
          output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
        }
      }
E
eclipsess 已提交
763

764
      for (m = 1; m < output_width - 4; m += 4) {
765 766
        float *output_ptr =
            output_data + (output_height - 1) * output_width + m;
E
eclipsess 已提交
767

768 769 770 771 772 773 774 775 776 777
        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + (output_height - 2) * input_width + m - 1);
        in1 = vld1q_f32(input_data + (output_height - 2) * input_width + m + 3);
        in2 = vld1q_f32(input_data + (output_height - 1) * input_width + m - 1);
        in3 = vld1q_f32(input_data + (output_height - 1) * input_width + m + 3);
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = vmulq_n_f32(in0, w00);
E
eclipsess 已提交
778 779
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
780
        out0 = vmlaq_n_f32(out0, in2, w10);
E
eclipsess 已提交
781 782 783 784 785 786
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
        if (if_relu) {
          out0 = vmaxq_f32(out0, vzero);
        }
787
        vst1q_f32(output_ptr, out0);
E
eclipsess 已提交
788
      }
789 790 791 792 793 794 795 796 797 798 799 800 801 802
      for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[(output_height - 1) * input_width + j] =
            input_data[(output_height - 2) * input_width + j - 1] * w00 +
            input_data[(output_height - 2) * input_width + j] * w01 +
            input_data[(output_height - 2) * input_width + j + 1] * w02 +
            input_data[(output_height - 1) * input_width + j - 1] * w10 +
            input_data[(output_height - 1) * input_width + j] * w11 +
            input_data[(output_height - 1) * input_width + j + 1] * w12;
        output_data[(output_height - 1) * output_width + j] =
            output_data[(output_height - 1) * output_width + j] *
                newscale_data[c] +
            newbias_data[c];
E
eclipsess 已提交
803

804 805 806 807 808 809
        if (if_relu) {
          output_data[(output_height - 1) * output_width + j] =
              output_data[(output_height - 1) * output_width + j] < 0
                  ? 0
                  : output_data[(output_height - 1) * output_width + j];
        }
E
eclipsess 已提交
810
      }
811 812
    }
  }
E
eclipsess 已提交
813

814
    /*
815 816 817 818 819 820 821 822
        const float *input_data = input->data<float>();
        const float *filter_data = filter->data<float>();
        float *output_data = output->data<float>();
        const float *newscale_data = new_scale->data<float>();
        const float *newbias_data = new_bias->data<float>();

        const int h = static_cast<int>(input->dims()[2]);
        const int w = static_cast<int>(input->dims()[3]);
E
eclipsess 已提交
823
//        const int l = h;
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

        const int batch_size = static_cast<int>(input->dims()[0]);
        const int c = static_cast<int>(input->dims()[1]);
        const int hxw = h * w;
        float32x4_t vnewbias = vdupq_n_f32(0.0);
        float32x4_t vnewscale = vdupq_n_f32(1.0);
        float32x4_t vzero = vdupq_n_f32(0);

        for (int b = 0; b < batch_size; ++b) {
          const float *filter_data_tmp = filter_data;

          for (int j = 0; j < c; ++j) {
            vnewbias = vdupq_n_f32(newbias_data[j]);
            vnewscale = vdupq_n_f32(newscale_data[j]);

E
eclipsess 已提交
839
            int w_mid = w - 2;  // l=1->l_mid=-1,l=2->l_mid=0
840 841 842 843 844 845 846 847 848 849 850
            float w00 = filter_data_tmp[0];
            float w01 = filter_data_tmp[1];
            float w02 = filter_data_tmp[2];
            float w10 = filter_data_tmp[3];
            float w11 = filter_data_tmp[4];
            float w12 = filter_data_tmp[5];
            float w20 = filter_data_tmp[6];
            float w21 = filter_data_tmp[7];
            float w22 = filter_data_tmp[8];

            output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
E
eclipsess 已提交
851 852 853 854 855 856 857 858 859 860 861 862
                             w21 * input_data[w] + w22 * input_data[w + 1];

            output_data[w - 1] = w10 * input_data[w - 2] + w11 * input_data[w -
       1] + w20 * input_data[2 * w - 2] + w21 * input_data[2 * w - 1];

            output_data[(h - 1) * w] =
                w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w +
       1] + w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
            output_data[h * w - 1] = w00 * input_data[h*w-w-2] +
                                     w01 * input_data[h*w-w-1] +
                                     w10 * input_data[h * w - 2] +
                                     w11 * input_data[h * w - 1];
863
            output_data[0] = output_data[0] * newscale_data[j] +
E
eclipsess 已提交
864 865 866 867 868
       newbias_data[j]; output_data[w - 1] = output_data[w - 1] *
       newscale_data[j] + newbias_data[j]; output_data[(h - 1) * w] =
                output_data[(h - 1) * w] * newscale_data[j] + newbias_data[j];
            output_data[h * w - 1] =
                output_data[h * w - 1] * newscale_data[j] + newbias_data[j];
E
eclipsess 已提交
869

870 871
            if (if_relu) {
              output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
E
eclipsess 已提交
872 873 874 875
              output_data[w - 1] = output_data[w - 1] < 0 ? 0 : output_data[w -
       1]; output_data[(h - 1) * w] = output_data[(h - 1) * w] < 0 ? 0 :
       output_data[(h - 1) * w]; output_data[h * w - 1] = output_data[h * w - 1]
       < 0 ? 0 : output_data[h * w - 1];
876
            }
E
eclipsess 已提交
877 878 879 880 881 882 883 884 885 886 887
            for (int i = 1; i < h - 1; ++i) {
              output_data[i * w] =
                  w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1]
       + w11 * input_data[i * w] + w12 * input_data[i * w + 1] + w21 *
       input_data[i * w + w] + w22 * input_data[i * w + w + 1]; output_data[i *
       w + w - 1] = w00 * input_data[i * w + w - 1 - w - 1] + w01 * input_data[i
       * w + w - 1 - w] + w10 * input_data[i * w + w - 1 - 1] + w11 *
       input_data[i * w + w - 1] + w20 * input_data[i * w + w - 1 + w - 1] + w21
       * input_data[i * w + w - 1 + w]; output_data[i * w] = output_data[i * w]
       * newscale_data[j] + newbias_data[j]; output_data[i * w + w - 1] =
                  output_data[i * w + w - 1] * newscale_data[j] +
888 889 890
       newbias_data[j];

              if (if_relu) {
E
eclipsess 已提交
891 892 893
                output_data[i * w] = output_data[i * w] < 0 ? 0 : output_data[i
       * w]; output_data[i * w + w - 1] = output_data[i * w + w - 1] < 0 ? 0 :
       output_data[i * w + w - 1];
894 895
              }
            }
E
eclipsess 已提交
896

897 898 899 900 901
            // top 1 row and bottom 1 row
            const float *input_tmp = input_data;

            float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1,
       tmp2, tmp3, tmp4, tmp5, out0; in0 = vld1q_f32(input_tmp); in2 =
E
eclipsess 已提交
902 903 904
       vld1q_f32(input_tmp + w); const float *input_tmp_end = input_tmp + (h -
       2) * w; in4 = vld1q_f32(input_tmp_end); in6 = vld1q_f32(input_tmp_end +
       w); int c_mid = w_mid; auto output_ptr = output_data + 1; for (; c_mid >
905
       3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 =
E
eclipsess 已提交
906
       vld1q_f32(input_tmp + w + 4);
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

              tmp0 = vextq_f32(in0, in1, 1);
              tmp1 = vextq_f32(in0, in1, 2);

              tmp2 = vextq_f32(in2, in3, 1);
              tmp3 = vextq_f32(in2, in3, 2);

              out0 = vmulq_n_f32(in0, w10);
              out0 = vmlaq_n_f32(out0, tmp0, w11);
              out0 = vmlaq_n_f32(out0, tmp1, w12);
              out0 = vmlaq_n_f32(out0, in2, w20);
              out0 = vmlaq_n_f32(out0, tmp2, w21);
              out0 = vmlaq_n_f32(out0, tmp3, w22);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
              vst1q_f32(output_ptr, out0);

              in5 = vld1q_f32(input_tmp_end + 4);
E
eclipsess 已提交
927
              in7 = vld1q_f32(input_tmp_end + w + 4);
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

              tmp0 = vextq_f32(in4, in5, 1);
              tmp1 = vextq_f32(in4, in5, 2);
              tmp2 = vextq_f32(in6, in7, 1);
              tmp3 = vextq_f32(in6, in7, 2);

              out0 = vmulq_n_f32(in4, w00);
              out0 = vmlaq_n_f32(out0, tmp0, w01);
              out0 = vmlaq_n_f32(out0, tmp1, w02);
              out0 = vmlaq_n_f32(out0, in6, w10);
              out0 = vmlaq_n_f32(out0, tmp2, w11);
              out0 = vmlaq_n_f32(out0, tmp3, w12);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
E
eclipsess 已提交
944
              vst1q_f32(output_ptr + (h - 1) * w, out0);
945 946 947 948 949 950 951 952 953 954

              // can optimize to each 8 stride.
              input_tmp += 4;
              input_tmp_end += 4;
              output_ptr += 4;
              in0 = in1;
              in2 = in3;
              in4 = in5;
              in6 = in7;
            }
E
eclipsess 已提交
955

956
            // top right pad
E
eclipsess 已提交
957 958
            float32x4_t pad0 = vdupq_n_f32(input_data[w - 1]);
            float32x4_t pad1 = vdupq_n_f32(input_data[2 * w - 1]);
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985

            tmp0 = vextq_f32(in0, pad0, 1);
            tmp1 = vextq_f32(in0, pad0, 2);
            tmp2 = vextq_f32(in2, pad1, 1);
            tmp3 = vextq_f32(in2, pad1, 2);

            out0 = vmulq_n_f32(in0, w10);
            out0 = vmlaq_n_f32(out0, tmp0, w11);
            out0 = vmlaq_n_f32(out0, tmp1, w12);
            out0 = vmlaq_n_f32(out0, in2, w20);
            out0 = vmlaq_n_f32(out0, tmp2, w21);
            out0 = vmlaq_n_f32(out0, tmp3, w22);
            out0 = vmlaq_f32(vnewbias, vnewscale, out0);
            if (if_relu) {
              out0 = vmaxq_f32(out0, vzero);
            }
            for (int i = 0; i < c_mid; ++i) {
              if (i == 0) {
                vst1q_lane_f32(output_ptr + i, out0, 0);
              }
              if (i == 1) {
                vst1q_lane_f32(output_ptr + i, out0, 1);
              }
              if (i == 2) {
                vst1q_lane_f32(output_ptr + i, out0, 2);
              }
            }
986

987
            // bottom right pad
E
eclipsess 已提交
988 989
            float32x4_t pad2 = vdupq_n_f32(input_data[h * w - 1 - w]);
            float32x4_t pad3 = vdupq_n_f32(input_data[h * w - 1]);
990

991 992 993 994
            tmp0 = vextq_f32(in4, pad2, 1);
            tmp1 = vextq_f32(in4, pad2, 2);
            tmp2 = vextq_f32(in6, pad3, 1);
            tmp3 = vextq_f32(in6, pad3, 2);
995

996
            out0 = vmulq_n_f32(in4, w00);
997 998
            out0 = vmlaq_n_f32(out0, tmp0, w01);
            out0 = vmlaq_n_f32(out0, tmp1, w02);
999
            out0 = vmlaq_n_f32(out0, in6, w10);
1000 1001 1002 1003 1004 1005
            out0 = vmlaq_n_f32(out0, tmp2, w11);
            out0 = vmlaq_n_f32(out0, tmp3, w12);
            out0 = vmlaq_f32(vnewbias, vnewscale, out0);
            if (if_relu) {
              out0 = vmaxq_f32(out0, vzero);
            }
1006 1007
            for (int i = 0; i < c_mid; ++i) {
              if (i == 0) {
E
eclipsess 已提交
1008
                vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 0);
1009 1010
              }
              if (i == 1) {
E
eclipsess 已提交
1011
                vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 1);
1012 1013
              }
              if (i == 2) {
E
eclipsess 已提交
1014
                vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 2);
1015 1016 1017 1018 1019
              }
            }
            // mid


E
eclipsess 已提交
1020 1021 1022
            for (int i = 0; i < h - 2; ++i) {
              auto output_ptr = output_data + (i + 1) * w + 1;
              input_tmp = input_data + i * w;
1023
              auto in0_tmp = vld1q_f32(input_tmp);
E
eclipsess 已提交
1024 1025 1026
              auto in2_tmp = vld1q_f32(input_tmp + w);
              auto in4_tmp = vld1q_f32(input_tmp + w + w);
              c_mid = w_mid;
1027 1028
              for (; c_mid > 3; c_mid -= 4) {
                auto in1_tmp = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
1029 1030
                auto in3_tmp = vld1q_f32(input_tmp + w + 4);
                auto in5_tmp = vld1q_f32(input_tmp + w + w + 4);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

                tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
                tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
                tmp2 = vextq_f32(in2_tmp, in3_tmp, 1);
                tmp3 = vextq_f32(in2_tmp, in3_tmp, 2);
                tmp4 = vextq_f32(in4_tmp, in5_tmp, 1);
                tmp5 = vextq_f32(in4_tmp, in5_tmp, 2);

                out0 = vmulq_n_f32(in0_tmp, w00);
                out0 = vmlaq_n_f32(out0, tmp0, w01);
                out0 = vmlaq_n_f32(out0, tmp1, w02);
                out0 = vmlaq_n_f32(out0, in2_tmp, w10);
                out0 = vmlaq_n_f32(out0, tmp2, w11);
                out0 = vmlaq_n_f32(out0, tmp3, w12);
                out0 = vmlaq_n_f32(out0, in4_tmp, w20);
                out0 = vmlaq_n_f32(out0, tmp4, w21);
                out0 = vmlaq_n_f32(out0, tmp5, w22);
                out0 = vmlaq_f32(vnewbias, vnewscale, out0);
                if (if_relu) {
                  out0 = vmaxq_f32(out0, vzero);
                }
                vst1q_f32(output_ptr, out0);
1053

1054 1055 1056 1057 1058 1059
                output_ptr += 4;
                input_tmp += 4;
                in0_tmp = in1_tmp;
                in2_tmp = in3_tmp;
                in4_tmp = in5_tmp;
              }
1060

E
eclipsess 已提交
1061 1062 1063
              float32x4_t pad0 = vdupq_n_f32(input_data[i * w + w - 1]);
              float32x4_t pad1 = vdupq_n_f32(input_data[i * w + w - 1 + w]);
              float32x4_t pad2 = vdupq_n_f32(input_data[i * w + w - 1 + w + w]);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

              tmp0 = vextq_f32(in0_tmp, pad0, 1);
              tmp1 = vextq_f32(in0_tmp, pad0, 2);
              tmp2 = vextq_f32(in2_tmp, pad1, 1);
              tmp3 = vextq_f32(in2_tmp, pad1, 2);
              tmp4 = vextq_f32(in4_tmp, pad2, 1);
              tmp5 = vextq_f32(in4_tmp, pad2, 2);

              out0 = vmulq_n_f32(in0_tmp, w00);
              out0 = vmlaq_n_f32(out0, tmp0, w01);
              out0 = vmlaq_n_f32(out0, tmp1, w02);
              out0 = vmlaq_n_f32(out0, in2_tmp, w10);
              out0 = vmlaq_n_f32(out0, tmp2, w11);
              out0 = vmlaq_n_f32(out0, tmp3, w12);
              out0 = vmlaq_n_f32(out0, in4_tmp, w20);
              out0 = vmlaq_n_f32(out0, tmp4, w21);
              out0 = vmlaq_n_f32(out0, tmp5, w22);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
              for (int i = 0; i < c_mid; ++i) {
                if (i == 0) {
                  vst1q_lane_f32(output_ptr + i, out0, 0);
                }
                if (i == 1) {
                  vst1q_lane_f32(output_ptr + i, out0, 1);
                }
                if (i == 2) {
                  vst1q_lane_f32(output_ptr + i, out0, 2);
                }
              }
1096
            }
1097 1098 1099
            output_data += hxw;
            input_data += hxw;
            filter_data_tmp += 9;
E
eclipsess 已提交
1100 1101
          }
        }
1102 1103
    */

L
liuruilong 已提交
1104
#endif
E
eclipsess 已提交
1105
}
1106

E
eclipsess 已提交
1107
/// w!=h not fix
H
hjchen2 已提交
1108 1109 1110 1111 1112 1113
void DepthwiseConvAddBNRelu3x3s2p1(const framework::Tensor *input,
                                   const framework::Tensor *filter,
                                   framework::Tensor *output,
                                   const framework::Tensor *new_scale,
                                   const framework::Tensor *new_bias,
                                   bool if_relu) {
1114
#if __ARM_NEON
L
liuruilong 已提交
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  const int _kernel_size = 3;
  const int stride_height = 2;
  const int stride_width = 2;
  const int padding_height = 1;
  const int padding_width = 1;
  const float zero = 0;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;
  const int filter_channel_stride = 9;
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();

  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  const int filter_batch_stride = output_channels * output_channel_stride;
  const float *pos1, *pos2, *pos3, *filter1, *filter2, *filter3, *output_ptr;
  int hstart, wstart, hend, wend;
  float result;
  for (int i = 0; i < batch_size; ++i) {
    for (int c = 0; c < output_channels; ++c) {
      filter1 = filter_data;
      filter2 = filter1 + 3;
      filter3 = filter2 + 3;

      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
          hstart = ph * stride_height - padding_height;
          wstart = pw * stride_width - padding_width;
H
hjchen2 已提交
1159 1160 1161 1162 1163 1164
          hend = std::min(hstart + _kernel_size, input_height + padding_height);
          wend = std::min(wstart + _kernel_size, input_width + padding_width);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          hend = std::min(hend, input_height);
          wend = std::min(wend, input_width);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
          pos1 = input_data + hstart * input_width + wstart;
          pos2 = input_data + (hstart + 1) * input_width + wstart;
          pos3 = input_data + (hstart + 2) * input_width + wstart;
          output_ptr = output_data + ph * output_width + pw;

          if (hend - hstart != 3 || wend - wstart != 3) {
            result = 0;
            float fake_input[9] = {0};
            if (hstart == 0 && wstart == 0) {
              // 左上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k -
                                   (3 - wend)];
                  }
                }
              }
            } else if (hstart == 0 && wend == input_width) {
              // 右上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height && wstart == 0) {
              // 左下角

              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - 1 - hstart && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k - (3 - wend)];
                  }
                }
              }
            } else if (hend == input_height && wend == input_width) {
              // 右下角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1 &&
                      k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            } else if (hstart == 0) {
              // 顶部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height) {
              // 底部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }

            } else if (wstart == 0) {
              // 左侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width +
                                   (k - (3 - wend))];
                  }
                }
              }

            } else if (wend == input_width) {
              // 右侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            }
            for (int l = 0; l < 9; ++l) {
              result += fake_input[l] * filter1[l];
            }
            output_data[ph * output_width + pw] =
                newscale_data[c] * result + newbias_data[c];

            if (if_relu) {
              output_data[ph * output_width + pw] =
                  output_data[ph * output_width + pw] < 0
                      ? 0
                      : output_data[ph * output_width + pw];
            }
          } else {
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);

            const float32x4_t v_filter1 = vld1q_f32(filter1);
            const float32x4_t v_filter2 = vld1q_f32(filter2);
            const float32x4_t v_filter3 = vld1q_f32(filter3);
            float32x4_t mula = vmulq_f32(data1, v_filter1);
            mula = vmlaq_f32(mula, data2, v_filter2);
            mula = vmlaq_f32(mula, data3, v_filter3);
            float32x2_t res = vpadd_f32(
                vget_high_f32(vsetq_lane_f32(0, mula, 3)), vget_low_f32(mula));
            res = vpadd_f32(res, res);
            output_data[ph * output_width + pw] =
                vget_lane_f32(res, 0) * newscale_data[c] + newbias_data[c];

            if (if_relu) {
              output_data[ph * output_width + pw] =
                  output_data[ph * output_width + pw] < 0
                      ? 0
                      : output_data[ph * output_width + pw];
            }
          }
        }
      }
      input_data += input_channel_stride;
      output_data += output_channel_stride;
      filter_data += filter_channel_stride;
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
L
liuruilong 已提交
1307
#endif
1308
}
E
eclipsess 已提交
1309

H
hjchen2 已提交
1310 1311
void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
                            const framework::Tensor *filter,
1312
                            framework::Tensor *output, framework::Tensor *bias,
1313
                            bool if_bias, bool if_relu) {
1314
#if __ARM_NEON
E
eclipsess 已提交
1315 1316 1317
  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  float *output_data = output->data<float>();
1318 1319 1320 1321
  const float *bias_data;
  if (if_bias) {
    bias_data = bias->data<float>();
  }
E
eclipsess 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330

  const int in_h = static_cast<int>(input->dims()[2]);
  const int in_w = static_cast<int>(input->dims()[3]);
  const int out_h = static_cast<int>(output->dims()[2]);
  const int out_w = static_cast<int>(output->dims()[3]);
  const int out_l = out_h;
  const int in_l = in_h;
  const int inhxw = in_h * in_w;
  const int outhxw = out_h * out_w;
E
eclipsess 已提交
1331
  /// todo : fix if_pad when w != h
E
eclipsess 已提交
1332 1333
  const int if_pad_r = in_w - 1 == (out_w - 1) * 2 ? 1 : 0;
  const int if_pad_b = in_h - 1 == (out_h - 1) * 2 ? 1 : 0;
E
eclipsess 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const float *input_row_ptr;
  float *output_row_ptr;

  const int w_times = (out_w - 2) / 3;

  float32x4_t vbias = vdupq_n_f32(0.0);

E
eclipsess 已提交
1343
  float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
E
eclipsess 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
  float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
  int out2in_mid;
  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = batch_size; b > 0; --b) {
    const float *filter_data_tmp = filter_data;
    for (int j = 0; j < c; ++j) {
      auto output_data_tmp = output_data + j * out_h * out_w;
      auto input_data_tmp = input_data + j * in_h * in_w;
      auto input_const = input_data_tmp;

      if (if_bias) {
        vbias = vdupq_n_f32(bias_data[j]);
      }

      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      int h_mid = 0;

      for (; h_mid < out_h - 1; h_mid++) {
        input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
        output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

        for (int w4 = 0; w4 < w_times + 1; w4++) {
          if (h_mid == 0) {
            elewise_res1 = zero;
            elewise_res0 = zero;
            elewise_res2 = zero;
          } else {
            elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
            elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
            elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
          }
          input_buff_mid = vld2q_f32(input_row_ptr);
          input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

          elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
          elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
          elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);

          res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                           vaddq_f32(elewise_res0, elewise_res1));
          res3 = vaddq_f32(res3, vbias);
1401 1402 1403
          if (if_relu) {
            res3 = vmaxq_f32(res3, zero);
          }
E
eclipsess 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
          vst1q_f32(output_row_ptr, res3);

          input_row_ptr += 6;
          output_row_ptr += 3;
        }
      }
      clock();

      input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
      output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

      for (int w4 = 0; w4 < w_times + 1; w4++) {
        elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
        elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
        elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);

        input_buff_mid = vld2q_f32(input_row_ptr);
        input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

        elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
        elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
        elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

E
eclipsess 已提交
1427
        if (!if_pad_b) {
E
eclipsess 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);
        }
        res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                         vaddq_f32(elewise_res0, elewise_res1));
        res3 = vaddq_f32(res3, vbias);
1438 1439 1440
        if (if_relu) {
          res3 = vmaxq_f32(res3, zero);
        }
E
eclipsess 已提交
1441 1442 1443 1444

        if ((w4 != w_times)) {
          vst1q_f32(output_row_ptr, res3);
        } else {
E
eclipsess 已提交
1445
          if (out_w - 2 - w_times * 3 == 1) {
E
eclipsess 已提交
1446
            vst1q_lane_f32(output_row_ptr, res3, 0);
E
eclipsess 已提交
1447
          } else if (out_w - 2 - w_times * 3 == 2) {
E
eclipsess 已提交
1448 1449 1450 1451 1452 1453 1454 1455
            vst1q_lane_f32(output_row_ptr, res3, 0);
            vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          }
        }
        input_row_ptr += 6;
        output_row_ptr += 3;
      }

1456 1457 1458 1459 1460 1461 1462 1463 1464
      // leftTop, rightTop, leftBottom, rightBottom
      int lt = 0;
      int rt = out_w - 1;
      int lb = out_w * (out_h - 1);
      int rb = out_h * out_w - 1;

      output_data_tmp[lt] = input_const[0] * w11 + input_const[1] * w12 +
                            input_const[in_w] * w21 +
                            input_const[in_w + 1] * w22;
E
eclipsess 已提交
1465

E
eclipsess 已提交
1466
      out2in_mid = (out_w - 1) * 2;
1467
      output_data_tmp[rt] =
E
eclipsess 已提交
1468 1469 1470
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          w20 * input_const[out2in_mid + in_w - 1] +
          w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1471 1472
          (1 - if_pad_r) * (w12 * input_const[out2in_mid + 1] +
                            w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1473

E
eclipsess 已提交
1474
      out2in_mid = (out_h - 1) * 2 * in_w;
E
eclipsess 已提交
1475

1476
      output_data_tmp[lb] =
E
eclipsess 已提交
1477 1478 1479
          w01 * input_const[out2in_mid - in_w] +
          w02 * input_const[out2in_mid - in_w + 1] +
          w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid + 1] +
E
eclipsess 已提交
1480 1481
          (1 - if_pad_b) * (w21 * input_const[out2in_mid + in_w] +
                            w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1482
      out2in_mid = (out_h - 1) * 2 * in_w + (out_w - 1) * 2;
E
eclipsess 已提交
1483

1484
      output_data_tmp[rb] =
E
eclipsess 已提交
1485 1486 1487
          w00 * input_const[out2in_mid - in_w - 1] +
          w01 * input_const[out2in_mid - in_w] +
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
E
eclipsess 已提交
1488 1489 1490 1491 1492 1493
          (1 - if_pad_r) * (w20 * input_const[out2in_mid + in_w - 1] +
                            w21 * input_const[out2in_mid + in_w]) +
          (1 - if_pad_b) * (w02 * input_const[out2in_mid - in_w + 1] +
                            w12 * input_const[out2in_mid + 1]) +
          (1 - if_pad_r) * (1 - if_pad_b) * w22 *
              input_const[out2in_mid + in_w + 1];
E
eclipsess 已提交
1494
      if (if_bias) {
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
        output_data_tmp[lt] += bias_data[j];
        output_data_tmp[rt] += bias_data[j];
        output_data_tmp[lb] += bias_data[j];
        output_data_tmp[rb] += bias_data[j];
      }
      if (if_relu) {
        output_data_tmp[lt] = output_data_tmp[lt] < 0 ? 0 : output_data_tmp[lt];
        output_data_tmp[rt] = output_data_tmp[rt] < 0 ? 0 : output_data_tmp[rt];
        output_data_tmp[lb] = output_data_tmp[lb] < 0 ? 0 : output_data_tmp[lb];
        output_data_tmp[rb] = output_data_tmp[rb] < 0 ? 0 : output_data_tmp[rb];
E
eclipsess 已提交
1505 1506 1507
      }
      for (int i = 1; i < out_h - 1; i++) {
        out2in_mid = i * 2 * in_w;
1508 1509 1510 1511 1512 1513 1514
        int left = i * out_w;
        output_data_tmp[left] = w01 * input_const[out2in_mid - in_w] +
                                w02 * input_const[out2in_mid - in_w + 1] +
                                w11 * input_const[out2in_mid] +
                                w12 * input_const[out2in_mid + 1] +
                                w21 * input_const[out2in_mid + in_w] +
                                w22 * input_const[out2in_mid + in_w + 1];
E
eclipsess 已提交
1515

E
eclipsess 已提交
1516
        out2in_mid = i * 2 * in_w + (out_w - 1) * 2;
1517 1518
        int right = i * out_w + out_w - 1;
        output_data_tmp[right] =
E
eclipsess 已提交
1519 1520 1521 1522 1523
            w00 * input_const[out2in_mid - in_w - 1] +
            w01 * input_const[out2in_mid - in_w] +
            w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
            w20 * input_const[out2in_mid + in_w - 1] +
            w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1524 1525 1526
            (1 - if_pad_r) * (w02 * input_const[out2in_mid - in_w + 1] +
                              w12 * input_const[out2in_mid + 1] +
                              w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1527
        if (if_bias) {
1528 1529 1530 1531 1532 1533 1534 1535
          output_data_tmp[left] += bias_data[j];
          output_data_tmp[right] += bias_data[j];
        }
        if (if_relu) {
          output_data_tmp[left] =
              output_data_tmp[left] < 0 ? 0 : output_data_tmp[left];
          output_data_tmp[right] =
              output_data_tmp[right] < 0 ? 0 : output_data_tmp[right];
E
eclipsess 已提交
1536 1537 1538 1539 1540 1541 1542
        }
      }
      filter_data_tmp += 9;
    }
    input_data += inhxw * c;
    output_data += outhxw * c;
  }
L
liuruilong 已提交
1543
#endif
E
eclipsess 已提交
1544 1545
}

H
hjchen2 已提交
1546 1547 1548 1549 1550 1551
void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input,
                                     const framework::Tensor *filter,
                                     framework::Tensor *output,
                                     const framework::Tensor *new_scale,
                                     const framework::Tensor *new_bias,
                                     bool if_relu) {
1552
#if __ARM_NEON
1553
  // #ifdef _OPENMP
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
  //  const float *newscale_data = new_scale->data<float>();
  //  const float *newbias_data = new_bias->data<float>();
  //
  //  const int batch_size = static_cast<int>(input->dims()[0]);
  //  const int input_channel = static_cast<int>(input->dims()[1]);
  //
  //  const int input_height = static_cast<int>(input->dims()[2]);
  //  const int input_width = static_cast<int>(input->dims()[3]);
  //  const int output_height = static_cast<int>(output->dims()[2]);
  //  const int output_width = static_cast<int>(output->dims()[3]);
  //  const int inhxw = input_height * input_width;
  //  const int outhxw = output_height * output_width;
  //
  //  float32x4_t zero = vdupq_n_f32(0.0);
  //  for (int b = 0; b < batch_size; b++) {
  //    #pragma omp parallel for
  //    for (int c = 0; c < input_channel; c++) {
  //      const float *filter_data = filter->data<float>() + c * 9;
  //      const float *input_data = input->data<float>() + c * inhxw;
  //      float *output_data = output->data<float>() + c * outhxw;
  //      float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
  //      float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
  //
  //      float w00 = filter_data[0];
  //      float w01 = filter_data[1];
  //      float w02 = filter_data[2];
  //      float w10 = filter_data[3];
  //      float w11 = filter_data[4];
  //      float w12 = filter_data[5];
  //      float w20 = filter_data[6];
  //      float w21 = filter_data[7];
  //      float w22 = filter_data[8];
  //
  //      int m;
  //      for (m = 1; m < output_width - 2; m = m + 3) {
  //        float *output_ptr = output_data + m;
  //        float32x4x2_t input_buff_mid{}, input_buff_bottom{};
  //        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
  //        input_buff_mid = vld2q_f32(input_data + (2 * m - 1));
  //        input_buff_bottom = vld2q_f32(input_data + input_width + (2 * m -
  //        1));
  //
  //        in0 = input_buff_mid.val[0];
  //        tmp0 = input_buff_mid.val[1];
  //        tmp1 = vextq_f32(in0, zero, 1);
  //
  //        in2 = input_buff_bottom.val[0];
  //        tmp2 = input_buff_bottom.val[1];
  //        tmp3 = vextq_f32(in2, zero, 1);
  //
  //        out0 = vmulq_n_f32(in0, w10);
  //        out0 = vmlaq_n_f32(out0, tmp0, w11);
  //        out0 = vmlaq_n_f32(out0, tmp1, w12);
  //        out0 = vmlaq_n_f32(out0, in2, w20);
  //        out0 = vmlaq_n_f32(out0, tmp2, w21);
  //        out0 = vmlaq_n_f32(out0, tmp3, w22);
  //        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
  //        if (if_relu) {
  //          out0 = vmaxq_f32(out0, zero);
  //        }
  //        vst1q_lane_f32(output_ptr, out0, 0);
  //        vst1q_lane_f32(output_ptr + 1, out0, 1);
  //        vst1q_lane_f32(output_ptr + 2, out0, 2);
  //      }
  //      for (m = 1; m < output_width - 2; m += 3) {
  //      }
  //      for (int j = m; j < output_width; j++) {
  //        output_data[j] = input_data[2 * j - 1] * w10 + input_data[2 * j] *
  //        w11 +
  //                         input_data[2 * j + 1] * w12 +
  //                         input_data[2 * j - 1 + input_width] * w20 +
  //                         input_data[2 * j + input_width] * w21 +
  //                         input_data[2 * j + 1 + input_width] * w22;
  //        output_data[j] = newscale_data[c] * output_data[j] +
  //        newbias_data[c]; if (if_relu) {
  //          output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
  //        }
  //      }
  //
  //      for (int i = 1; i < output_height; i += 1) {
  //        for (int m = 1; m < output_width - 2; m += 3) {
  //          float *output_ptr = output_data + i * output_width + m;
  //          float32x4x2_t input_buff_top{}, input_buff_mid{},
  //          input_buff_bottom{}; float32x4_t in0, in1, in2, in3, in4, in5,
  //          tmp0, tmp1, tmp2, tmp3,
  //              tmp4, tmp5, out0;
  //          input_buff_top =
  //              vld2q_f32(input_data + (2 * i - 1) * input_width + (2 * m -
  //              1));
  //          input_buff_mid =
  //              vld2q_f32(input_data + (2 * i) * input_width + (2 * m - 1));
  //          input_buff_bottom =
  //              vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m -
  //              1));
  //
  //          in0 = input_buff_top.val[0];
  //          tmp0 = input_buff_top.val[1];
  //          tmp1 = vextq_f32(in0, zero, 1);
  //
  //          in2 = input_buff_mid.val[0];
  //          tmp2 = input_buff_mid.val[1];
  //          tmp3 = vextq_f32(in2, zero, 1);
  //
  //          in4 = input_buff_bottom.val[0];
  //          tmp4 = input_buff_bottom.val[1];
  //          tmp5 = vextq_f32(in4, zero, 1);
  //
  //          out0 = vmulq_n_f32(in0, w00);
  //          out0 = vmlaq_n_f32(out0, tmp0, w01);
  //          out0 = vmlaq_n_f32(out0, tmp1, w02);
  //          out0 = vmlaq_n_f32(out0, in2, w10);
  //          out0 = vmlaq_n_f32(out0, tmp2, w11);
  //          out0 = vmlaq_n_f32(out0, tmp3, w12);
  //          out0 = vmlaq_n_f32(out0, in4, w20);
  //          out0 = vmlaq_n_f32(out0, tmp4, w21);
  //          out0 = vmlaq_n_f32(out0, tmp5, w22);
  //          out0 = vmlaq_f32(vnewbias, vnewscale, out0);
  //          if (if_relu) {
  //            out0 = vmaxq_f32(out0, zero);
  //          }
  //          vst1q_lane_f32(output_ptr, out0, 0);
  //          vst1q_lane_f32(output_ptr + 1, out0, 1);
  //          vst1q_lane_f32(output_ptr + 2, out0, 2);
  //        }
  //        int m;
  //        for (m = 1; m < output_width - 2; m += 3) {
  //        }
  //        for (int j = m; j < output_width; j++) {
  //          output_data[i * output_width + j] =
  //              input_data[(2 * i - 1) * input_width + 2 * j - 1] * w00 +
  //              input_data[(2 * i - 1) * input_width + 2 * j] * w01 +
  //              input_data[(2 * i - 1) * input_width + 2 * j + 1] * w02 +
  //              input_data[(2 * i) * input_width + 2 * j - 1] * w10 +
  //              input_data[(2 * i) * input_width + 2 * j] * w11 +
  //              input_data[(2 * i) * input_width + 2 * j + 1] * w12 +
  //              input_data[(2 * i + 1) * input_width + 2 * j - 1] * w20 +
  //              input_data[(2 * i + 1) * input_width + 2 * j] * w21 +
  //              input_data[(2 * i + 1) * input_width + 2 * j + 1] * w22;
  //          output_data[i * output_width + j] =
  //              newscale_data[c] * output_data[i * output_width + j] +
  //              newbias_data[c];
  //          if (if_relu) {
  //            output_data[i * output_width + j] =
  //                output_data[i * output_width + j] < 0
  //                    ? 0
  //                    : output_data[i * output_width + j];
  //          }
  //        }
  //      }
  //      output_data[0] = input_data[0] * w11 + input_data[1] * w12 +
  //                       input_data[input_height] * w21 +
  //                       input_data[input_height + 1] * w22;
  //
  //      output_data[0] = newscale_data[c] * output_data[0] + newbias_data[c];
  //      if (if_relu) {
  //        output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
  //      }
  //      for (int i = 1; i < output_height; i++) {
  //        output_data[i * output_width] =
  //            input_data[(2 * i - 1) * input_width] * w01 +
  //            input_data[(2 * i - 1) * input_width + 1] * w02 +
  //            input_data[(2 * i) * input_width] * w11 +
  //            input_data[(2 * i) * input_width + 1] * w12 +
  //            input_data[(2 * i + 1) * input_width] * w21 +
  //            input_data[(2 * i + 1) * input_width + 1] * w22;
  //
  //        output_data[i * output_width] =
  //            newscale_data[c] * output_data[i * output_width] +
  //            newbias_data[c];
  //        if (if_relu) {
  //          output_data[i * output_width] = output_data[i * output_width] < 0
  //                                              ? 0
  //                                              : output_data[i *
  //                                              output_width];
  //        }
  //      }
  //    }
  //  }
  //
1733
  // #else
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  float *output_data = output->data<float>();
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const int in_h = static_cast<int>(input->dims()[2]);
  const int in_w = static_cast<int>(input->dims()[3]);
  const int out_h = static_cast<int>(output->dims()[2]);
  const int out_w = static_cast<int>(output->dims()[3]);
E
eclipsess 已提交
1745 1746
  //  const int out_l = out_h;
  //  const int in_l = in_h;
1747 1748
  const int inhxw = in_h * in_w;
  const int outhxw = out_h * out_w;
E
eclipsess 已提交
1749
  /// todo : fix if_pad when w != h
E
eclipsess 已提交
1750 1751
  const int if_pad_r = in_w - 1 == (out_w - 1) * 2 ? 1 : 0;
  const int if_pad_b = in_h - 1 == (out_h - 1) * 2 ? 1 : 0;
1752 1753 1754 1755 1756
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const int w_times = (out_w - 2) / 3;
  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = batch_size; b > 0; --b) {
1757
#pragma omp parallel for
1758 1759 1760 1761 1762 1763 1764 1765
    for (int j = 0; j < c; j++) {
      const float *input_row_ptr;
      float *output_row_ptr;
      float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
      float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
      int out2in_mid;
      float32x4_t vnewbias = vdupq_n_f32(0.0);
      float32x4_t vnewscale = vdupq_n_f32(1.0);
1766 1767 1768
      auto output_data_tmp = output_data + j * out_h * out_w;
      auto input_data_tmp = input_data + j * in_h * in_w;
      auto input_const = input_data_tmp;
1769
      const float *filter_data_tmp = filter_data + 9 * j;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
      vnewbias = vdupq_n_f32(newbias_data[j]);
      vnewscale = vdupq_n_f32(newscale_data[j]);

      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      int h_mid = 0;

      for (; h_mid < out_h - 1; h_mid++) {
        input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
        output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

        for (int w4 = 0; w4 < w_times + 1; w4++) {
          if (h_mid == 0) {
            elewise_res1 = zero;
            elewise_res0 = zero;
            elewise_res2 = zero;
          } else {
            elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
            elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
            elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
          }
          input_buff_mid = vld2q_f32(input_row_ptr);
          input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

          elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
          elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
          elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);

          res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                           vaddq_f32(elewise_res0, elewise_res1));
          res3 = vmlaq_f32(vnewbias, vnewscale, res3);

          if (if_relu) {
            res3 = vmaxq_f32(res3, zero);
          }
1820 1821 1822
          vst1q_lane_f32(output_row_ptr, res3, 0);
          vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          vst1q_lane_f32(output_row_ptr + 2, res3, 2);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

          input_row_ptr += 6;
          output_row_ptr += 3;
        }
      }
      clock();

      input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
      output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

      for (int w4 = 0; w4 < w_times + 1; w4++) {
        elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
        elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
        elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);

        input_buff_mid = vld2q_f32(input_row_ptr);
        input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

        elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
        elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
        elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

E
eclipsess 已提交
1845
        if (!if_pad_b) {
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);
        }
        res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                         vaddq_f32(elewise_res0, elewise_res1));
        res3 = vmlaq_f32(vnewbias, vnewscale, res3);

        if (if_relu) {
          res3 = vmaxq_f32(res3, zero);
        }
        if ((w4 != w_times)) {
1861 1862 1863
          vst1q_lane_f32(output_row_ptr, res3, 0);
          vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          vst1q_lane_f32(output_row_ptr + 2, res3, 2);
1864
        } else {
E
eclipsess 已提交
1865
          if (out_w - 2 - w_times * 3 == 1) {
1866
            vst1q_lane_f32(output_row_ptr, res3, 0);
E
eclipsess 已提交
1867
          } else if (out_w - 2 - w_times * 3 == 2) {
1868 1869 1870 1871 1872 1873 1874 1875 1876
            vst1q_lane_f32(output_row_ptr, res3, 0);
            vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          }
        }
        input_row_ptr += 6;
        output_row_ptr += 3;
      }

      output_data_tmp[0] = input_const[0] * w11 + input_const[1] * w12 +
E
eclipsess 已提交
1877 1878
                           input_const[in_w] * w21 +
                           input_const[in_w + 1] * w22;
1879

E
eclipsess 已提交
1880
      out2in_mid = (out_w - 1) * 2;
E
eclipsess 已提交
1881
      output_data_tmp[out_w - 1] =
1882 1883 1884
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          w20 * input_const[out2in_mid + in_w - 1] +
          w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1885 1886
          (1 - if_pad_r) * (w12 * input_const[out2in_mid + 1] +
                            w22 * input_const[out2in_mid + in_w + 1]);
1887

E
eclipsess 已提交
1888
      out2in_mid = (out_h - 1) * 2 * in_w;
1889

E
eclipsess 已提交
1890
      output_data_tmp[out_w * (out_h - 1)] =
1891 1892 1893
          w01 * input_const[out2in_mid - in_w] +
          w02 * input_const[out2in_mid - in_w + 1] +
          w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid + 1] +
E
eclipsess 已提交
1894 1895
          (1 - if_pad_b) * (w21 * input_const[out2in_mid + in_w] +
                            w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1896
      out2in_mid = (out_h - 1) * 2 * in_w + (out_w - 1) * 2;
1897

E
eclipsess 已提交
1898
      output_data_tmp[out_h * out_w - 1] =
1899 1900 1901
          w00 * input_const[out2in_mid - in_w - 1] +
          w01 * input_const[out2in_mid - in_w] +
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
E
eclipsess 已提交
1902 1903 1904 1905 1906 1907
          (1 - if_pad_r) * (w20 * input_const[out2in_mid + in_w - 1] +
                            w21 * input_const[out2in_mid + in_w]) +
          (1 - if_pad_b) * (w02 * input_const[out2in_mid - in_w + 1] +
                            w12 * input_const[out2in_mid + 1]) +
          (1 - if_pad_r) * (1 - if_pad_b) * w22 *
              input_const[out2in_mid + in_w + 1];
1908 1909
      output_data_tmp[0] =
          output_data_tmp[0] * newscale_data[j] + newbias_data[j];
E
eclipsess 已提交
1910 1911 1912 1913
      output_data_tmp[out_w - 1] =
          output_data_tmp[out_w - 1] * newscale_data[j] + newbias_data[j];
      output_data_tmp[out_w * (out_h - 1)] =
          output_data_tmp[out_w * (out_h - 1)] * newscale_data[j] +
1914
          newbias_data[j];
E
eclipsess 已提交
1915 1916
      output_data_tmp[out_h * out_w - 1] =
          output_data_tmp[out_h * out_w - 1] * newscale_data[j] +
1917 1918 1919
          newbias_data[j];
      if (if_relu) {
        output_data_tmp[0] = output_data_tmp[0] < 0 ? 0 : output_data_tmp[0];
E
eclipsess 已提交
1920 1921 1922 1923
        output_data_tmp[out_w - 1] =
            output_data_tmp[out_w - 1] < 0 ? 0 : output_data_tmp[out_w - 1];
        output_data_tmp[out_w * (out_h - 1)] =
            output_data_tmp[out_w * (out_h - 1)] < 0
1924
                ? 0
E
eclipsess 已提交
1925 1926 1927
                : output_data_tmp[out_w * (out_h - 1)];
        output_data_tmp[out_h * out_w - 1] =
            output_data_tmp[out_h * out_w - 1] < 0
1928
                ? 0
E
eclipsess 已提交
1929
                : output_data_tmp[out_h * out_w - 1];
1930 1931 1932
      }
      for (int i = 1; i < out_h - 1; i++) {
        out2in_mid = i * 2 * in_w;
E
eclipsess 已提交
1933
        output_data_tmp[i * out_w] = w01 * input_const[out2in_mid - in_w] +
1934 1935 1936 1937 1938
                                     w02 * input_const[out2in_mid - in_w + 1] +
                                     w11 * input_const[out2in_mid] +
                                     w12 * input_const[out2in_mid + 1] +
                                     w21 * input_const[out2in_mid + in_w] +
                                     w22 * input_const[out2in_mid + in_w + 1];
1939

E
eclipsess 已提交
1940
        out2in_mid = i * 2 * in_w + (out_w - 1) * 2;
E
eclipsess 已提交
1941
        output_data_tmp[i * out_w + out_w - 1] =
1942 1943 1944 1945 1946
            w00 * input_const[out2in_mid - in_w - 1] +
            w01 * input_const[out2in_mid - in_w] +
            w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
            w20 * input_const[out2in_mid + in_w - 1] +
            w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1947 1948 1949
            (1 - if_pad_r) * (w02 * input_const[out2in_mid - in_w + 1] +
                              w12 * input_const[out2in_mid + 1] +
                              w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1950 1951 1952 1953
        output_data_tmp[i * out_w] =
            output_data_tmp[i * out_w] * newscale_data[j] + newbias_data[j];
        output_data_tmp[i * out_w + out_w - 1] =
            output_data_tmp[i * out_w + out_w - 1] * newscale_data[j] +
1954 1955
            newbias_data[j];
        if (if_relu) {
E
eclipsess 已提交
1956 1957 1958 1959
          output_data_tmp[i * out_w] =
              output_data_tmp[i * out_w] < 0 ? 0 : output_data_tmp[i * out_w];
          output_data_tmp[i * out_w + out_w - 1] =
              output_data_tmp[i * out_w + out_w - 1] < 0
1960
                  ? 0
E
eclipsess 已提交
1961
                  : output_data_tmp[i * out_w + out_w - 1];
1962 1963 1964 1965 1966 1967
        }
      }
    }
    input_data += inhxw * c;
    output_data += outhxw * c;
  }
1968 1969 1970 1971
// #endif
#endif
}

H
hjchen2 已提交
1972 1973
void DepthwiseConv3x3s2p0(const framework::Tensor *input,
                          const framework::Tensor *filter,
1974
                          framework::Tensor *output, framework::Tensor *bias,
1975
                          bool if_bias, bool if_relu) {
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
#if __ARM_NEON

  const int batch_size = static_cast<int>(input->dims()[0]);
  const int input_channel = static_cast<int>(input->dims()[1]);

  const int input_height = static_cast<int>(input->dims()[2]);
  const int input_width = static_cast<int>(input->dims()[3]);
  const int output_height = static_cast<int>(output->dims()[2]);
  const int output_width = static_cast<int>(output->dims()[3]);
  const int inhxw = input_height * input_width;
  const int outhxw = output_height * output_width;

  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = 0; b < batch_size; b++) {
#pragma omp parallel for
    for (int c = 0; c < input_channel; c++) {
      const float *filter_data = filter->data<float>() + c * 9;
      const float *input_data = input->data<float>() + c * inhxw;
1994
      const float *bias_data = bias->data<float>() + c;
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
      float *output_data = output->data<float>() + c * outhxw;
      float w00 = filter_data[0];
      float w01 = filter_data[1];
      float w02 = filter_data[2];
      float w10 = filter_data[3];
      float w11 = filter_data[4];
      float w12 = filter_data[5];
      float w20 = filter_data[6];
      float w21 = filter_data[7];
      float w22 = filter_data[8];
2005
      float32x4_t biasv = vld1q_dup_f32(bias_data);
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
      for (int i = 0; i < output_height; i += 1) {
        for (int m = 0; m < output_width - 2; m += 3) {
          float *output_ptr = output_data + i * output_width + m;
          float32x4x2_t input_buff_top{}, input_buff_mid{}, input_buff_bottom{};
          float32x4_t in0, in1, in2, in3, in4, in5, tmp0, tmp1, tmp2, tmp3,
              tmp4, tmp5, out0;
          input_buff_top =
              vld2q_f32(input_data + (2 * i) * input_width + (2 * m));
          input_buff_mid =
              vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m));
          input_buff_bottom =
              vld2q_f32(input_data + (2 * i + 2) * input_width + (2 * m));

          in0 = input_buff_top.val[0];
          tmp0 = input_buff_top.val[1];
          tmp1 = vextq_f32(in0, zero, 1);

          in2 = input_buff_mid.val[0];
          tmp2 = input_buff_mid.val[1];
          tmp3 = vextq_f32(in2, zero, 1);

          in4 = input_buff_bottom.val[0];
          tmp4 = input_buff_bottom.val[1];
          tmp5 = vextq_f32(in4, zero, 1);

          out0 = vmulq_n_f32(in0, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);
2040 2041 2042
          if (if_bias) {
            out0 = vaddq_f32(out0, biasv);
          }
2043 2044 2045
          if (if_relu) {
            out0 = vmaxq_f32(out0, zero);
          }
2046 2047 2048 2049 2050 2051 2052 2053
          vst1q_lane_f32(output_ptr, out0, 0);
          vst1q_lane_f32(output_ptr + 1, out0, 1);
          vst1q_lane_f32(output_ptr + 2, out0, 2);
        }
        int m;
        for (m = 0; m < output_width - 2; m += 3) {
        }
        for (int j = m; j < output_width; j++) {
2054 2055
          int index = i * output_width + j;
          output_data[index] =
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
              input_data[(2 * i) * input_width + 2 * j] * w00 +
              input_data[(2 * i) * input_width + 2 * j + 1] * w01 +
              input_data[(2 * i) * input_width + 2 * j + 2] * w02 +
              input_data[(2 * i + 1) * input_width + 2 * j] * w10 +
              input_data[(2 * i + 1) * input_width + 2 * j + 1] * w11 +
              input_data[(2 * i + 1) * input_width + 2 * j + 2] * w12 +
              input_data[(2 * i + 2) * input_width + 2 * j] * w20 +
              input_data[(2 * i + 2) * input_width + 2 * j + 1] * w21 +
              input_data[(2 * i + 2) * input_width + 2 * j + 2] * w22;
          if (if_bias) {
2066 2067 2068 2069 2070
            output_data[index] += *bias_data;
          }
          if (if_relu) {
            output_data[index] =
                output_data[index] < 0 ? 0 : output_data[index];
2071
          }
2072 2073 2074 2075 2076
        }
      }
    }
  }

L
liuruilong 已提交
2077
#endif
E
eclipsess 已提交
2078 2079
}

W
wangliu 已提交
2080 2081 2082
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile