op_lite.cc 9.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/core/op_lite.h"
#include <list>
#include <set>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {

25 26 27 28 29 30 31 32
std::string int2string(int index) {
  const int BUFFER_LENGTH = 30;
  char buffer[BUFFER_LENGTH];
  int num = snprintf(buffer, sizeof(buffer), "%d", index);
  CHECK(num > 0 && num < sizeof(buffer));
  return std::string(buffer);
}

33 34 35
bool OpLite::InferShape() {
  // if input_tensor_ptrs and output_tensor_ptrs are overloaded in param_
  // InferShapeByMemoryInternal will be applied.
36 37
  if (op_param_ && op_param_->input_tensor_ptrs() &&
      op_param_->output_tensor_ptrs()) {
38 39 40 41 42 43 44
    return this->InferShapeWithCache();
  } else {
    return this->InferShapeImpl();
  }
}
bool OpLite::InferShapeWithCache() {
  // 1. Get vector of current input tensors
45
  auto *current_inputs = op_param_->input_tensor_ptrs();
46
  // 2. Get hash value of current inputs shape and lod
47 48 49 50 51 52 53
  bool use_cache = true;
  if (last_input_shapes.size() == current_inputs->size()) {
    for (int i = 0; i < current_inputs->size(); i++) {
      if (last_input_shapes[i] != current_inputs->at(i)->dims() ||
          last_input_lods[i] != current_inputs->at(i)->lod()) {
        use_cache = false;
        break;
54 55
      }
    }
56 57
  } else {
    use_cache = false;
58
  }
59

60
  // 3. infer shapes of output tensors
61
  if (use_cache) {
62 63
    // if current hash value is consistent with io_shape_lod_hash_,
    // previous outputs shape and lod are reused.
64
    auto *current_outputs = op_param_->output_tensor_ptrs();
65
    for (size_t i = 0; i < current_outputs->size(); i++) {
66 67 68 69 70 71
      current_outputs->at(i)->Resize(last_output_shapes[i]);
      current_outputs->at(i)->set_lod(last_output_lods[i]);
    }
  } else {
    // otherwise, current hash value is changed, InferShapeImpl will apply.
    this->InferShapeImpl();
72 73 74
    auto *current_outputs = op_param_->output_tensor_ptrs();
    last_output_shapes.clear();
    last_output_lods.clear();
75
    for (size_t i = 0; i < current_outputs->size(); i++) {
76 77
      last_output_shapes.push_back(current_outputs->at(i)->dims());
      last_output_lods.push_back(current_outputs->at(i)->lod());
78
    }
79 80 81 82 83 84
    last_input_shapes.clear();
    last_input_lods.clear();
    for (size_t i = 0; i < current_inputs->size(); i++) {
      last_input_shapes.push_back(current_inputs->at(i)->dims());
      last_input_lods.push_back(current_inputs->at(i)->lod());
    }
85 86 87 88
  }
  return true;
}

Y
Yan Chunwei 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
std::vector<std::unique_ptr<KernelBase>> OpLite::CreateKernels(
    const std::vector<Place> &places, const std::string &kernel_type) {
  std::vector<std::unique_ptr<KernelBase>> kernels;
  CHECK(!op_type_.empty()) << "op_type_ should be set first";

  auto pick_kernel = [&](const Place &place) {
    auto ks = KernelRegistry::Global().Create(
        op_type_, place.target, place.precision, place.layout);
    VLOG(5) << "pick kernel for " << op_info()->Type() << " "
            << place.DebugString() << " get " << ks.size() << " kernels";
    for (auto &&it : ks) {
      AttachKernel(it.get());
      kernels.emplace_back(std::move(it));
    }
  };

  if (!kernel_type.empty()) {
    Place place;
    std::string op_type, alias;
    KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place);
    pick_kernel(place);
    CHECK(!kernels.empty()) << "no kernel for kernel type " << kernel_type;
    return kernels;
  }

114 115 116 117 118 119 120 121 122
  std::set<Place> expanded_places(places.begin(), places.end());
  for (auto &place : places) {
    // Pick kernels those support any Precision and any DataLayout, For example:
    // kARM,kFloat,kNCHW -> kARM,kFloat,kAny; kARM,kAny,kNCHW; kARM,kAny,kAny
    expanded_places.insert(
        Place(place.target, place.precision, DATALAYOUT(kAny)));
    expanded_places.insert(Place(place.target, PRECISION(kAny), place.layout));
    expanded_places.insert(
        Place(place.target, PRECISION(kAny), DATALAYOUT(kAny)));
Y
Yan Chunwei 已提交
123 124 125
  }

  std::set<TargetType> targets;
126
  for (auto place : expanded_places) {
Y
Yan Chunwei 已提交
127 128 129 130
    pick_kernel(place);
    targets.insert(place.target);
  }

Z
Zhaolong Xing 已提交
131
  VLOG(5) << "op " << op_type_ << " get " << kernels.size() << " kernels";
Y
Yan Chunwei 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  return kernels;
}

bool OpLite::Run() {
  CHECK(kernel_);
  SyncInputEvents();

  kernel_->Launch();

  RecordOutputEvents();
  return true;
}

bool OpLite::Attach(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  // valid_places_.clear();
  CHECK(scope != nullptr);
  // CHECK(!op_info_.get());
  scope_ = scope;
  op_info_.reset(
      new OpInfo(opdesc));  // Force clean the out-of-date infomation.
  return AttachImpl(*op_info(), scope);
}

const Tensor *OpLite::GetTensor(lite::Scope *scope,
                                const std::string &name) const {
  auto *var = scope->FindVar(name);
  CHECK(var) << "no variable called " << name << " found";
  return &var->Get<lite::Tensor>();
}

Tensor *OpLite::GetMutableTensor(lite::Scope *scope,
                                 const std::string &name) const {
  auto *var = scope->FindVar(name);
  CHECK(var) << "no variable called " << name << " found";
  return var->GetMutable<lite::Tensor>();
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
void OpLite::AttachInput(const cpp::OpDesc &op_desc,
                         lite::Scope *scope,
                         const std::string &input_name,
                         bool is_dispensable,
                         lite::Tensor **input_var) {
  bool is_have_input =
      op_desc.HasInput(input_name) && op_desc.Input(input_name).size() > 0;
  CHECK(is_dispensable || is_have_input);
  if (is_have_input) {
    std::string input_var_name = op_desc.Input(input_name).front();
    *input_var = scope->FindVar(input_var_name)->GetMutable<lite::Tensor>();
  }
}

void OpLite::AttachOutput(const cpp::OpDesc &op_desc,
                          lite::Scope *scope,
                          const std::string &output_name,
                          bool is_dispensable,
                          lite::Tensor **output_var) {
  bool is_have_output =
      op_desc.HasOutput(output_name) && op_desc.Output(output_name).size() > 0;
  CHECK(is_dispensable || is_have_output);
  if (is_have_output) {
    std::string output_var_name = op_desc.Output(output_name).front();
    *output_var = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
  }
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
bool OpInfo::GetInputArgname(const std::string &value_name,
                             std::string *out) const {
  for (auto &item : inputs_) {
    auto it = std::find(item.second.begin(), item.second.end(), value_name);
    if (it != item.second.end()) {
      *out = item.first;
      return true;
    }
  }
  return false;
}

bool OpInfo::GetOutputArgname(const std::string &value_name,
                              std::string *out) const {
  for (auto &item : outputs_) {
    auto it = std::find(item.second.begin(), item.second.end(), value_name);
    if (it != item.second.end()) {
      *out = item.first;
      return true;
    }
  }
  return false;
}

bool OpInfo::GetInputIndex(const std::string &input_name, int *out) const {
  for (auto &item : inputs_) {
    auto it = std::find(item.second.begin(), item.second.end(), input_name);
    if (it != item.second.end()) {
      *out = it - item.second.begin();
      return true;
    }
  }
  return false;
}

bool OpInfo::GetOutputIndex(const std::string &output_name, int *out) const {
  for (auto &item : outputs_) {
    auto it = std::find(item.second.begin(), item.second.end(), output_name);
    if (it != item.second.end()) {
      *out = it - item.second.begin();
      return true;
    }
  }
  return false;
}

bool OpInfo::HasInputScale(const std::string &input_name) const {
  std::string argname;
  int index;
  if (GetInputArgname(input_name, &argname) &&
      GetInputIndex(input_name, &index)) {
    return HasAttr(argname + int2string(index) + "_scale");
  } else {
    return false;
  }
}

bool OpInfo::HasOutputScale(const std::string &output_name) const {
  std::string argname;
  int index;
  if (GetOutputArgname(output_name, &argname) &&
      GetOutputIndex(output_name, &index)) {
    return HasAttr(argname + int2string(index) + "_scale");
  } else {
    return false;
  }
}

template <>
void OpInfo::SetInputScale(const std::string &input_name,
                           const float &scale_value) {
  std::string argname;
  int index;
  CHECK(GetInputArgname(input_name, &argname));
  CHECK(GetInputIndex(input_name, &index));
  SetAttr<float>(argname + int2string(index) + "_scale", scale_value);
}

template <>
void OpInfo::SetInputScale(const std::string &input_name,
                           const std::vector<float> &scale_value) {
  std::string argname;
  int index;
  CHECK(GetInputArgname(input_name, &argname));
  CHECK(GetInputIndex(input_name, &index));
  SetAttr<std::vector<float>>(argname + int2string(index) + "_scale",
                              scale_value);
}

template <>
void OpInfo::SetOutputScale(const std::string &output_name,
                            const float &scale_value) {
  std::string argname;
  int index;
  CHECK(GetOutputArgname(output_name, &argname));
  CHECK(GetOutputIndex(output_name, &index));
  SetAttr<float>(argname + int2string(index) + "_scale", scale_value);
}

template <>
void OpInfo::SetOutputScale(const std::string &output_name,
                            const std::vector<float> &scale_value) {
  std::string argname;
  int index;
  CHECK(GetOutputArgname(output_name, &argname));
  CHECK(GetOutputIndex(output_name, &index));
  SetAttr<std::vector<float>>(argname + int2string(index) + "_scale",
                              scale_value);
}

Y
Yan Chunwei 已提交
307 308
}  // namespace lite
}  // namespace paddle