op_lite.cc 6.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/core/op_lite.h"
#include <list>
#include <set>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
bool OpLite::InferShape() {
  // if input_tensor_ptrs and output_tensor_ptrs are overloaded in param_
  // InferShapeByMemoryInternal will be applied.
  if (param_.input_tensor_ptrs() && param_.output_tensor_ptrs()) {
    return this->InferShapeWithCache();
  } else {
    // otherwise, InferShapeImpl is applied directly.
    return this->InferShapeImpl();
  }
}
bool OpLite::InferShapeWithCache() {
  // 1. Get vector of current input tensors
  auto *current_inputs = param_.input_tensor_ptrs();
  // 2. Get hash value of current inputs shape and lod
  size_t new_hash = 0;
  for (auto iter = current_inputs->begin(); iter != current_inputs->end();
       iter++) {
    // combined dims value into new_hash value.
    auto &element_dims = (*iter)->dims();
44
    for (size_t i = 0; i < element_dims.size(); i++) {
45 46 47 48 49 50 51
      new_hash =
          lite::hash_combine(new_hash, static_cast<int>(element_dims[i]));
    }
    // combine lod value into new_hash valud.
    auto &emement_lods = (*iter)->lod();
    for (auto lod_iter = emement_lods.begin(); lod_iter != emement_lods.end();
         lod_iter++) {
52
      for (size_t i = 0; i < lod_iter->size(); i++) {
53 54 55 56 57 58 59 60 61 62
        new_hash =
            lite::hash_combine(new_hash, static_cast<int>(lod_iter->at(i)));
      }
    }
  }
  // 3. infer shapes of output tensors
  if (new_hash == io_shape_lod_hash_ && new_hash != 0) {
    // if current hash value is consistent with io_shape_lod_hash_,
    // previous outputs shape and lod are reused.
    auto *current_outputs = param_.output_tensor_ptrs();
63
    for (size_t i = 0; i < current_outputs->size(); i++) {
64 65 66 67 68 69 70 71
      current_outputs->at(i)->Resize(last_output_shapes[i]);
      current_outputs->at(i)->set_lod(last_output_lods[i]);
    }
  } else {
    // otherwise, current hash value is changed, InferShapeImpl will apply.
    io_shape_lod_hash_ = new_hash;
    this->InferShapeImpl();
    auto *current_outputs = param_.output_tensor_ptrs();
72
    for (size_t i = 0; i < current_outputs->size(); i++) {
73 74 75 76 77 78 79
      last_output_shapes[i] = current_outputs->at(i)->dims();
      last_output_lods[i] = current_outputs->at(i)->lod();
    }
  }
  return true;
}

Y
Yan Chunwei 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
std::vector<std::unique_ptr<KernelBase>> OpLite::CreateKernels(
    const std::vector<Place> &places, const std::string &kernel_type) {
  std::vector<std::unique_ptr<KernelBase>> kernels;
  CHECK(!op_type_.empty()) << "op_type_ should be set first";

  auto pick_kernel = [&](const Place &place) {
    auto ks = KernelRegistry::Global().Create(
        op_type_, place.target, place.precision, place.layout);
    VLOG(5) << "pick kernel for " << op_info()->Type() << " "
            << place.DebugString() << " get " << ks.size() << " kernels";
    for (auto &&it : ks) {
      AttachKernel(it.get());
      kernels.emplace_back(std::move(it));
    }
  };

  if (!kernel_type.empty()) {
    Place place;
    std::string op_type, alias;
    KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place);
    pick_kernel(place);
    CHECK(!kernels.empty()) << "no kernel for kernel type " << kernel_type;
    return kernels;
  }

105 106 107 108 109 110 111 112 113
  std::set<Place> expanded_places(places.begin(), places.end());
  for (auto &place : places) {
    // Pick kernels those support any Precision and any DataLayout, For example:
    // kARM,kFloat,kNCHW -> kARM,kFloat,kAny; kARM,kAny,kNCHW; kARM,kAny,kAny
    expanded_places.insert(
        Place(place.target, place.precision, DATALAYOUT(kAny)));
    expanded_places.insert(Place(place.target, PRECISION(kAny), place.layout));
    expanded_places.insert(
        Place(place.target, PRECISION(kAny), DATALAYOUT(kAny)));
Y
Yan Chunwei 已提交
114 115 116
  }

  std::set<TargetType> targets;
117
  for (auto place : expanded_places) {
Y
Yan Chunwei 已提交
118 119 120 121
    pick_kernel(place);
    targets.insert(place.target);
  }

Z
Zhaolong Xing 已提交
122
  VLOG(5) << "op " << op_type_ << " get " << kernels.size() << " kernels";
Y
Yan Chunwei 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  return kernels;
}

bool OpLite::Run() {
  CHECK(kernel_);
  SyncInputEvents();

  kernel_->Launch();

  RecordOutputEvents();
  return true;
}

bool OpLite::Attach(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  // valid_places_.clear();
  CHECK(scope != nullptr);
  // CHECK(!op_info_.get());
  scope_ = scope;
  op_info_.reset(
      new OpInfo(opdesc));  // Force clean the out-of-date infomation.
  return AttachImpl(*op_info(), scope);
}

const Tensor *OpLite::GetTensor(lite::Scope *scope,
                                const std::string &name) const {
  auto *var = scope->FindVar(name);
  CHECK(var) << "no variable called " << name << " found";
  return &var->Get<lite::Tensor>();
}

Tensor *OpLite::GetMutableTensor(lite::Scope *scope,
                                 const std::string &name) const {
  auto *var = scope->FindVar(name);
  CHECK(var) << "no variable called " << name << " found";
  return var->GetMutable<lite::Tensor>();
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
void OpLite::AttachInput(const cpp::OpDesc &op_desc,
                         lite::Scope *scope,
                         const std::string &input_name,
                         bool is_dispensable,
                         lite::Tensor **input_var) {
  bool is_have_input =
      op_desc.HasInput(input_name) && op_desc.Input(input_name).size() > 0;
  CHECK(is_dispensable || is_have_input);
  if (is_have_input) {
    std::string input_var_name = op_desc.Input(input_name).front();
    *input_var = scope->FindVar(input_var_name)->GetMutable<lite::Tensor>();
  }
}

void OpLite::AttachOutput(const cpp::OpDesc &op_desc,
                          lite::Scope *scope,
                          const std::string &output_name,
                          bool is_dispensable,
                          lite::Tensor **output_var) {
  bool is_have_output =
      op_desc.HasOutput(output_name) && op_desc.Output(output_name).size() > 0;
  CHECK(is_dispensable || is_have_output);
  if (is_have_output) {
    std::string output_var_name = op_desc.Output(output_name).front();
    *output_var = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
  }
}

Y
Yan Chunwei 已提交
188 189
}  // namespace lite
}  // namespace paddle