api.cpp 15.1 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "api.h"
H
hanbuhe 已提交
16 17
#include <fcntl.h>
#include <sys/ioctl.h>
Z
zhangyang 已提交
18
#include <sys/mman.h>
H
hanbuhe 已提交
19
#include <algorithm>
20
#include <map>
Z
zhangyang 已提交
21 22 23
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
Z
zhangyang 已提交
24
#define FPGA_TEST_MODE
25
#define PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
26

Z
zhangyang 已提交
27
namespace paddle_mobile {
H
hanbuhe 已提交
28 29 30 31
namespace fpga {

static int fd = -1;
static const char *device_path = "/dev/fpgadrv0";
32 33 34
#ifdef PADDLE_MOBILE_OS_LINUX
static std::map<void *, size_t> memory_map;
#endif
H
hanbuhe 已提交
35

H
hanbuhe 已提交
36
static inline int do_ioctl(int req, const void *arg) {
H
hanbuhe 已提交
37
#ifdef PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
38 39 40
  int result = ioctl(fd, req, (uint64_t)arg);
  PADDLE_MOBILE_ENFORCE(result == 0, "ioctl didn't return correctly");
  return result;
H
hanbuhe 已提交
41 42 43
#else
  return -1;
#endif
Z
zhangyang 已提交
44
}
H
hanbuhe 已提交
45 46 47 48 49 50 51 52 53 54

int open_device() {
  if (fd == -1) {
    fd = open(device_path, O_RDWR);
  }
  return fd;
}

// memory management;
void *fpga_malloc(size_t size) {
55 56 57
  static uint64_t counter = 0;
  counter += size;
  DLOG << size << " bytes allocated. Total " << counter << " bytes";
H
hanbuhe 已提交
58
#ifdef PADDLE_MOBILE_OS_LINUX
59 60 61
  auto ptr = mmap64(nullptr, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
  memory_map.insert(std::make_pair(ptr, size));
  return ptr;
H
hanbuhe 已提交
62
#else
63
  return malloc(size);
H
hanbuhe 已提交
64
#endif
H
hanbuhe 已提交
65 66
}

67 68
void fpga_free(void *ptr) {
#ifdef PADDLE_MOBILE_OS_LINUX
69 70 71 72 73 74 75 76 77 78
  static uint64_t counter = 0;
  size_t size = 0;
  auto iter = memory_map.find(ptr);  // std::map<void *, size_t>::iterator
  if (iter != memory_map.end()) {
    size = iter->second;
    munmap(ptr, size);
    memory_map.erase(iter);
  }
  counter += size;
  DLOG << size << " bytes freed. Total " << counter << " bytes";
79 80 81 82
#else
  free(ptr);
#endif
}
H
hanbuhe 已提交
83 84 85 86 87

void fpga_copy(void *dest, const void *src, size_t num) {
  memcpy(dest, src, num);
}

88
int fpga_flush(void *address, size_t size) {
Z
zhangyang 已提交
89
  struct MemoryCacheArgs args = {nullptr};
90 91 92 93 94 95
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_FLUSH, &args);
}

int fpga_invalidate(void *address, size_t size) {
Z
zhangyang 已提交
96
  struct MemoryCacheArgs args = {nullptr};
97 98 99 100 101
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_INVAL, &args);
}

Z
zhangyang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
int ComputeBasicConv(const struct ConvArgs &args) {
  DLOG << "======Compute Basic Conv======";
  DLOG << "   relu_enabled:" << args.relu_enabled
       << "   sb_address:" << args.sb_address
       << "   filter_address:" << args.filter_address
       << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num;
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;

  return do_ioctl(IOCTL_CONFIG_CONV, &args);
}

Z
zhangyang 已提交
126
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
Z
zhangyang 已提交
127
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
128 129 130 131
  DLOG << "=============ComputeFPGAConv===========";
  DLOG << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num
       << "   split_num:" << args.split_num;
Z
zhangyang 已提交
132
#endif
Z
zhangyang 已提交
133

Z
zhangyang 已提交
134 135
  int split_num = args.split_num;
  for (int i = 0; i < split_num; i++) {
Z
zhangyang 已提交
136
    ComputeBasicConv(args.conv_args[i]);
Z
zhangyang 已提交
137
  }
Z
zhangyang 已提交
138

Z
zhangyang 已提交
139 140 141
  if (split_num > 1) {
    ComputeFPGAConcat(args.concat_arg);
  }
H
hanbuhe 已提交
142
}
Z
zhangyang 已提交
143

H
hanbuhe 已提交
144
int ComputeFpgaPool(const struct PoolingArgs &args) {
Z
zhangyang 已提交
145
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
146
  DLOG << "=============ComputeFpgaPool===========";
Z
zhangyang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
162
  return do_ioctl(IOCTL_CONFIG_POOLING, &args);
H
hanbuhe 已提交
163
}
Z
zhangyang 已提交
164

H
hanbuhe 已提交
165
int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
Z
zhangyang 已提交
166
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
167
  DLOG << "=============ComputeFpgaEWAdd===========";
Z
zhangyang 已提交
168 169 170 171 172 173 174 175 176 177
  DLOG << "   relu_enabled:" << args.relu_enabled << "   const0:" << args.const0
       << "   const1:" << args.const1;
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
Z
zhangyang 已提交
178
       << "   image1_scale_address:" << args.image1.scale_address
Z
zhangyang 已提交
179 180 181 182 183 184 185 186 187
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
188 189 190
  return do_ioctl(IOCTL_CONFIG_EW, &args);
}
int PerformBypass(const struct BypassArgs &args) {
Z
zhangyang 已提交
191
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
192
  DLOG << "=============ComputeFpgaBypass===========";
H
hanbuhe 已提交
193
  DLOG << "   input_type:" << args.input_data_type
Z
zhangyang 已提交
194 195 196
       << "   output_type:" << args.output_data_type
       << "   input_layout_type:" << args.input_layout_type
       << "   output_layout_type:" << args.output_layout_type;
Z
zhangyang 已提交
197 198 199 200 201 202 203 204 205 206 207
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
208
  return do_ioctl(IOCTL_CONFIG_BYPASS, &args);
H
hanbuhe 已提交
209
}
Z
zhangyang 已提交
210

Z
zhangyang 已提交
211
int ComputeFPGAConcat(const struct ConcatArgs &args) {
Z
zhangyang 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224
#ifdef FPGA_TEST_MODE
  DLOG << "=============ComputeFpgaConcat===========";
  DLOG << "   out_address:" << args.image_out
       << "   out_scale_address:" << args.scale_out;
  DLOG << "   image_height:" << args.height << "   image_width:" << args.width;
  for (int i = 0; i < args.image_num; i++) {
    DLOG << "   " << i << "th:        ";
    DLOG << "   channel_num:" << args.channel_num[i]
         << "   image_address:" << args.images_in[i]
         << "   image_scale_address:" << args.scales_in[i];
  }
#endif

Z
zhangyang 已提交
225 226 227 228 229 230
  image::concat_images(args.images_in, args.scales_in, args.image_out,
                       args.scale_out, args.image_num, args.channel_num,
                       args.height, args.width);
  return 0;
}

Z
zhangyang 已提交
231 232
int get_align_image_cw(int cw) { return align_to_x(cw, IMAGE_ALIGNMENT); }

Z
zhangyang 已提交
233 234
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
235
  auto channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
236
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
237 238 239 240 241 242 243
  size_t memory_size = channel * height * width * sizeof(float);
  float *new_data = (float *)fpga_malloc(memory_size);
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

Z
zhangyang 已提交
244
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
245
  auto dims = ofm_tensor->dims();
246 247 248 249 250 251 252 253 254 255 256 257 258
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
259 260
}

Z
zhangyang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

Z
zhangyang 已提交
278 279 280 281
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
282 283 284

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
285 286
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
287 288 289 290
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

291
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
292
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
293 294
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
295 296 297 298
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
299 300 301 302 303 304 305 306
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

int get_aligned_filter_num(int num) {
  return align_to_x(num, FILTER_NUM_ALIGNMENT);
}

Z
zhangyang 已提交
307 308
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
Z
zhangyang 已提交
309
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
310
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
311
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
312
  size_t memory_size = num * channel * height * width * sizeof(float);
Z
zhangyang 已提交
313
  auto new_data = (float *)fpga_malloc(memory_size);
Z
zhangyang 已提交
314 315 316 317 318 319 320 321 322 323 324 325
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
326 327 328 329 330 331 332 333 334
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
Z
zhangyang 已提交
335
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
336 337 338 339
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

340 341 342 343 344 345
void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
                   framework::Tensor *out, framework::Tensor *filter,
                   bool relu_enabled, int group_num, int stride_h, int stride_w,
                   int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
346
  auto out_ptr = out->data<float>();
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

  arg->group_num = (uint32_t)group_num;
  arg->split_num = (uint32_t)fpga::get_plit_num(filter);
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
  arg->conv_args = (fpga::ConvArgs *)fpga::fpga_malloc(arg->split_num *
                                                       sizeof(fpga::ConvArgs));

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)filter->dims()[2];
  arg->concat_arg.width = (uint32_t)filter->dims()[3];

  int n = arg->split_num;
  arg->concat_arg.images_in = (half **)fpga::fpga_malloc(n * sizeof(int *));
  arg->concat_arg.scales_in = (float **)fpga::fpga_malloc(n * sizeof(float *));
  arg->concat_arg.channel_num =
      (uint32_t *)fpga::fpga_malloc(n * sizeof(uint32_t));
  arg->concat_arg.image_out = out_ptr;

Z
zhangyang 已提交
369
  auto channel = (int)out->dims()[1];
370
  int filter_num_per_div = fpga::get_filter_num_per_div(filter, group_num);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  for (int i = 0; i < n; i++) {
    arg->conv_args[i].relu_enabled = relu_enabled;
    arg->conv_args[i].group_num = (uint32_t)group_num;
    arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_args[i].image.address = input_ptr;
    arg->conv_args[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.scale_address = input->scale;
    arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_args[i].image.pad_width = (uint32_t)padding_w;
388 389 390 391
    arg->conv_args[i].filter_scale_address = filter->scale;
    arg->conv_args[i].filter_address =
        &((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
    arg->conv_args[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
392 393
    arg->conv_args[i].filter_num =
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
394 395
                                    channel - (n - 1) * filter_num_per_div)
                              : filter_num_per_div);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

    if (n > 1) {
      arg->conv_args[i].output.scale_address =
          (float *)fpga::fpga_malloc(2 * sizeof(float));
      arg->conv_args[i].output.address =
          fpga::fpga_malloc(input->dims()[2] * input->dims()[3] *
                            arg->conv_args[i].filter_num * sizeof(half));
    }

    else {
      arg->conv_args[i].output.scale_address = out->scale;
      arg->conv_args[i].output.address = out_ptr;
    }

    arg->concat_arg.images_in[i] = (half *)arg->conv_args[i].output.address;
    arg->concat_arg.scales_in[i] = (float *)arg->conv_args[i].sb_address;
    arg->concat_arg.channel_num[i] = arg->conv_args[i].filter_num;
  }
}

H
hanbuhe 已提交
416
}  // namespace fpga
Z
zhangyang 已提交
417
}  // namespace paddle_mobile