depthwise_conv3x3.cpp 80.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
H
hjchen2 已提交
14 15 16

#include "operators/math/depthwise_conv3x3.h"
#include <vector>
17
#if __ARM_NEON
E
eclipsess 已提交
18
#include <arm_neon.h>
L
liuruilong 已提交
19
#endif
W
wangliu 已提交
20 21 22 23

namespace paddle_mobile {
namespace operators {
namespace math {
H
hjchen2 已提交
24 25 26 27 28 29

void DepthwiseConv3x3(const framework::Tensor *input,
                      const std::vector<int> &strides,
                      const std::vector<int> &paddings,
                      const framework::Tensor *filter, framework::Tensor *bias,
                      framework::Tensor *output, bool if_bias) {
W
wangliu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  const int _kernel_size = 3;
  const int stride_height = strides[0];
  const int stride_width = strides[1];
  const int padding_height = paddings[0];
  const int padding_width = paddings[1];
  const float zero = 0;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;
  const int filter_channel_stride = 9;

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  if (if_bias) {
    math::expand_bias(*bias, 1, output->dims());
    output->ShareDataWith(*bias);
  }
  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  const int filter_batch_stride = output_channels * output_channel_stride;
  const float *pos1, *pos2, *pos3, *filter1, *filter2, *filter3, *output_ptr;
  int hstart, wstart, hend, wend;
  float result;
  for (int i = 0; i < batch_size; ++i) {
    for (int c = 0; c < output_channels; ++c) {
      filter1 = filter_data;
      filter2 = filter1 + 3;
      filter3 = filter2 + 3;

      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
          hstart = ph * stride_height - padding_height;
          wstart = pw * stride_width - padding_width;
H
hjchen2 已提交
74 75 76 77 78 79
          hend = std::min(hstart + _kernel_size, input_height + padding_height);
          wend = std::min(wstart + _kernel_size, input_width + padding_width);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          hend = std::min(hend, input_height);
          wend = std::min(wend, input_width);
W
wangliu 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
          pos1 = input_data + hstart * input_width + wstart;
          pos2 = input_data + (hstart + 1) * input_width + wstart;
          pos3 = input_data + (hstart + 2) * input_width + wstart;
          output_ptr = output_data + ph * output_width + pw;

          if (hend - hstart != 3 || wend - wstart != 3) {
            result = 0;
            float fake_input[9] = {0};
            if (hstart == 0 && wstart == 0) {
              // 左上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k -
                                   (3 - wend)];
                  }
                }
              }
            } else if (hstart == 0 && wend == input_width) {
              // 右上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height && wstart == 0) {
              // 左下角

              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - 1 - hstart && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k - (3 - wend)];
                  }
                }
              }
            } else if (hend == input_height && wend == input_width) {
              // 右下角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1 &&
                      k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            } else if (hstart == 0) {
              // 顶部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height) {
              // 底部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }

            } else if (wstart == 0) {
              // 左侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width +
                                   (k - (3 - wend))];
                  }
                }
              }

            } else if (wend == input_width) {
              // 右侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            }
            for (int l = 0; l < 9; ++l) {
              result += fake_input[l] * filter1[l];
            }
            if (if_bias) {
              output_data[ph * output_width + pw] += result;
            } else {
              output_data[ph * output_width + pw] = result;
            }

          } else {
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
#if __ARM_NEON
#if __aarch64__
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);

            const float32x4_t v_filter1 = vld1q_f32(filter1);
            const float32x4_t v_filter2 = vld1q_f32(filter2);
            const float32x4_t v_filter3 = vld1q_f32(filter3);
            float32x4_t mula = vmulq_f32(data1, v_filter1);
            mula = vmlaq_f32(mula, data2, v_filter2);
            mula = vmlaq_f32(mula, data3, v_filter3);
            float32x2_t res = vpadd_f32(
                vget_high_f32(vsetq_lane_f32(0, mula, 3)), vget_low_f32(mula));
            res = vpadd_f32(res, res);
            if (if_bias) {
              output_data[ph * output_width + pw] += vget_lane_f32(res, 0);
            } else {
              output_data[ph * output_width + pw] = vget_lane_f32(res, 0);
            }
#else
W
wangliu 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            asm volatile(

                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q4}, [%[filter1]]        \n\t"
                "vmov.f32 q0,    #0.0              \n\t"

                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q5}, [%[filter2]]        \n\t"
                "vmla.f32 q0, q1, q4           \n\t"

                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vld1.32  {q6}, [%[filter3]]        \n\t"

                "vmla.f32 q0, q2, q5           \n\t"
                "vmla.f32 q0, q3, q6          \n\t"

                "vmov.f32 d1[1],  %[zero]         \n\t"

                "vadd.f32  d4, d0, d1           \n\t"
                "vadd.f32  s10, s8, s9            \n\t"
                "vst1.32 {d5[0]},[%[output_ptr]]    \n\t"
                :
                : [input_data] "r"(input_data), [pos1] "r"(pos1),
                  [pos2] "r"(pos2), [pos3] "r"(pos3), [filter1] "r"(filter1),
                  [filter2] "r"(filter2), [filter3] "r"(filter3),
                  [output_ptr] "r"(output_ptr), [zero] "r"(zero)
                : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6");
235
#endif  // __aarch64__
W
wangliu 已提交
236 237
#else

238
#endif  // __ARM_NEON
W
wangliu 已提交
239 240 241 242 243 244 245 246 247 248 249 250
          }
        }
      }
      input_data += input_channel_stride;
      output_data += output_channel_stride;
      filter_data += filter_channel_stride;
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
}

H
hjchen2 已提交
251 252 253 254
void DepthwiseConv3x3s1p1(const framework::Tensor *input,
                          const framework::Tensor *filter,
                          framework::Tensor *output, framework::Tensor *bias,
                          bool if_bias) {
255
#if __ARM_NEON
W
wangliu 已提交
256 257
  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
258
  float *output_data = output->mutable_data<float>();
259 260 261 262
  const float *bias_data;
  if (if_bias) {
    bias_data = bias->data<float>();
  }
W
wangliu 已提交
263 264 265

  const int h = static_cast<int>(input->dims()[2]);
  const int w = static_cast<int>(input->dims()[3]);
E
eclipsess 已提交
266
  //  const int l = h;
W
wangliu 已提交
267 268 269 270 271 272 273 274 275 276 277 278
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const int hxw = h * w;
  float32x4_t vbias = vdupq_n_f32(0.0);
  for (int b = 0; b < batch_size; ++b) {
    const float *filter_data_tmp = filter_data;

    for (int j = 0; j < c; ++j) {
      if (if_bias) {
        vbias = vdupq_n_f32(bias_data[j]);
      }

E
eclipsess 已提交
279
      int w_mid = w - 2;  // l=1->l_mid=-1,l=2->l_mid=0
W
wangliu 已提交
280 281 282 283 284 285 286 287 288 289 290
      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
E
eclipsess 已提交
291 292 293 294 295 296 297 298 299 300
                       w21 * input_data[w] + w22 * input_data[w + 1];
      output_data[w - 1] = w10 * input_data[w - 2] + w11 * input_data[w - 1] +
                           w20 * input_data[2 * w - 2] +
                           w21 * input_data[2 * w - 1];
      output_data[(h - 1) * w] =
          w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w + 1] +
          w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
      output_data[h * w - 1] =
          w00 * input_data[h * w - w - 2] + w01 * input_data[h * w - w - 1] +
          w10 * input_data[h * w - 2] + w11 * input_data[h * w - 1];
E
eclipsess 已提交
301 302
      if (if_bias) {
        output_data[0] += bias_data[j];
E
eclipsess 已提交
303 304 305
        output_data[w - 1] += bias_data[j];
        output_data[(h - 1) * w] += bias_data[j];
        output_data[h * w - 1] += bias_data[j];
E
eclipsess 已提交
306
      }
W
wangliu 已提交
307

E
eclipsess 已提交
308 309 310
      for (int i = 1; i < h - 1; ++i) {
        output_data[i * w] =
            w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1] +
E
eclipsess 已提交
311
            w11 * input_data[i * w] + w12 * input_data[i * w + 1] +
E
eclipsess 已提交
312 313 314 315 316 317 318 319
            w21 * input_data[i * w + w] + w22 * input_data[i * w + w + 1];

        output_data[i * w + w - 1] = w00 * input_data[i * w + w - 1 - w - 1] +
                                     w01 * input_data[i * w + w - 1 - w] +
                                     w10 * input_data[i * w + w - 1 - 1] +
                                     w11 * input_data[i * w + w - 1] +
                                     w20 * input_data[i * w + w - 1 + w - 1] +
                                     w21 * input_data[i * w + w - 1 + w];
E
eclipsess 已提交
320
        if (if_bias) {
E
eclipsess 已提交
321 322
          output_data[i * w] += bias_data[j];
          output_data[i * w + w - 1] += bias_data[j];
E
eclipsess 已提交
323
        }
W
wangliu 已提交
324 325 326 327 328 329 330 331
      }

      // top 1 row and bottom 1 row
      const float *input_tmp = input_data;

      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
          tmp3, tmp4, tmp5, out0;
      in0 = vld1q_f32(input_tmp);
E
eclipsess 已提交
332 333
      in2 = vld1q_f32(input_tmp + w);
      const float *input_tmp_end = input_tmp + (h - 2) * w;
W
wangliu 已提交
334
      in4 = vld1q_f32(input_tmp_end);
E
eclipsess 已提交
335 336
      in6 = vld1q_f32(input_tmp_end + w);
      int c_mid = w_mid;
W
wangliu 已提交
337 338 339
      auto output_ptr = output_data + 1;
      for (; c_mid > 3; c_mid -= 4) {
        in1 = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
340
        in3 = vld1q_f32(input_tmp + w + 4);
W
wangliu 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);

        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);

        out0 = vmulq_n_f32(in0, w10);
        out0 = vmlaq_n_f32(out0, tmp0, w11);
        out0 = vmlaq_n_f32(out0, tmp1, w12);
        out0 = vmlaq_n_f32(out0, in2, w20);
        out0 = vmlaq_n_f32(out0, tmp2, w21);
        out0 = vmlaq_n_f32(out0, tmp3, w22);
        out0 = vaddq_f32(out0, vbias);

        vst1q_f32(output_ptr, out0);

        in5 = vld1q_f32(input_tmp_end + 4);
E
eclipsess 已提交
359
        in7 = vld1q_f32(input_tmp_end + w + 4);
W
wangliu 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373

        tmp0 = vextq_f32(in4, in5, 1);
        tmp1 = vextq_f32(in4, in5, 2);
        tmp2 = vextq_f32(in6, in7, 1);
        tmp3 = vextq_f32(in6, in7, 2);

        out0 = vmulq_n_f32(in4, w00);
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
        out0 = vmlaq_n_f32(out0, in6, w10);
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vaddq_f32(out0, vbias);

E
eclipsess 已提交
374
        vst1q_f32(output_ptr + (h - 1) * w, out0);
W
wangliu 已提交
375 376 377 378 379 380 381 382 383 384 385 386

        // can optimize to each 8 stride.
        input_tmp += 4;
        input_tmp_end += 4;
        output_ptr += 4;
        in0 = in1;
        in2 = in3;
        in4 = in5;
        in6 = in7;
      }

      // top right pad
E
eclipsess 已提交
387 388
      float32x4_t pad0 = vdupq_n_f32(input_data[w - 1]);
      float32x4_t pad1 = vdupq_n_f32(input_data[2 * w - 1]);
W
wangliu 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

      tmp0 = vextq_f32(in0, pad0, 1);
      tmp1 = vextq_f32(in0, pad0, 2);
      tmp2 = vextq_f32(in2, pad1, 1);
      tmp3 = vextq_f32(in2, pad1, 2);

      out0 = vmulq_n_f32(in0, w10);
      out0 = vmlaq_n_f32(out0, tmp0, w11);
      out0 = vmlaq_n_f32(out0, tmp1, w12);
      out0 = vmlaq_n_f32(out0, in2, w20);
      out0 = vmlaq_n_f32(out0, tmp2, w21);
      out0 = vmlaq_n_f32(out0, tmp3, w22);
      out0 = vaddq_f32(out0, vbias);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + i, out0, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + i, out0, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + i, out0, 2);
        }
      }

      // bottom right pad
E
eclipsess 已提交
416 417
      float32x4_t pad2 = vdupq_n_f32(input_data[h * w - 1 - w]);
      float32x4_t pad3 = vdupq_n_f32(input_data[h * w - 1]);
W
wangliu 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

      tmp0 = vextq_f32(in4, pad2, 1);
      tmp1 = vextq_f32(in4, pad2, 2);
      tmp2 = vextq_f32(in6, pad3, 1);
      tmp3 = vextq_f32(in6, pad3, 2);

      out0 = vmulq_n_f32(in4, w00);
      out0 = vmlaq_n_f32(out0, tmp0, w01);
      out0 = vmlaq_n_f32(out0, tmp1, w02);
      out0 = vmlaq_n_f32(out0, in6, w10);
      out0 = vmlaq_n_f32(out0, tmp2, w11);
      out0 = vmlaq_n_f32(out0, tmp3, w12);
      out0 = vaddq_f32(out0, vbias);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
E
eclipsess 已提交
434
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 0);
W
wangliu 已提交
435 436
        }
        if (i == 1) {
E
eclipsess 已提交
437
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 1);
W
wangliu 已提交
438 439
        }
        if (i == 2) {
E
eclipsess 已提交
440
          vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 2);
W
wangliu 已提交
441 442 443 444
        }
      }
      // mid

E
eclipsess 已提交
445 446 447
      for (int i = 0; i < h - 2; ++i) {
        auto output_ptr = output_data + (i + 1) * w + 1;
        input_tmp = input_data + i * w;
W
wangliu 已提交
448
        auto in0_tmp = vld1q_f32(input_tmp);
E
eclipsess 已提交
449 450 451
        auto in2_tmp = vld1q_f32(input_tmp + w);
        auto in4_tmp = vld1q_f32(input_tmp + w + w);
        c_mid = w_mid;
W
wangliu 已提交
452 453
        for (; c_mid > 3; c_mid -= 4) {
          auto in1_tmp = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
454 455
          auto in3_tmp = vld1q_f32(input_tmp + w + 4);
          auto in5_tmp = vld1q_f32(input_tmp + w + w + 4);
W
wangliu 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

          tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
          tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
          tmp2 = vextq_f32(in2_tmp, in3_tmp, 1);
          tmp3 = vextq_f32(in2_tmp, in3_tmp, 2);
          tmp4 = vextq_f32(in4_tmp, in5_tmp, 1);
          tmp5 = vextq_f32(in4_tmp, in5_tmp, 2);

          out0 = vmulq_n_f32(in0_tmp, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2_tmp, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4_tmp, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);
          out0 = vaddq_f32(out0, vbias);

          vst1q_f32(output_ptr, out0);

          output_ptr += 4;
          input_tmp += 4;
          in0_tmp = in1_tmp;
          in2_tmp = in3_tmp;
          in4_tmp = in5_tmp;
        }

E
eclipsess 已提交
484 485 486
        float32x4_t pad0 = vdupq_n_f32(input_data[i * w + w - 1]);
        float32x4_t pad1 = vdupq_n_f32(input_data[i * w + w - 1 + w]);
        float32x4_t pad2 = vdupq_n_f32(input_data[i * w + w - 1 + w + w]);
W
wangliu 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

        tmp0 = vextq_f32(in0_tmp, pad0, 1);
        tmp1 = vextq_f32(in0_tmp, pad0, 2);
        tmp2 = vextq_f32(in2_tmp, pad1, 1);
        tmp3 = vextq_f32(in2_tmp, pad1, 2);
        tmp4 = vextq_f32(in4_tmp, pad2, 1);
        tmp5 = vextq_f32(in4_tmp, pad2, 2);

        out0 = vmulq_n_f32(in0_tmp, w00);
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
        out0 = vmlaq_n_f32(out0, in2_tmp, w10);
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vmlaq_n_f32(out0, in4_tmp, w20);
        out0 = vmlaq_n_f32(out0, tmp4, w21);
        out0 = vmlaq_n_f32(out0, tmp5, w22);
        out0 = vaddq_f32(out0, vbias);

        for (int i = 0; i < c_mid; ++i) {
          if (i == 0) {
            vst1q_lane_f32(output_ptr + i, out0, 0);
          }
          if (i == 1) {
            vst1q_lane_f32(output_ptr + i, out0, 1);
          }
          if (i == 2) {
            vst1q_lane_f32(output_ptr + i, out0, 2);
          }
        }
      }
      output_data += hxw;
      input_data += hxw;
      filter_data_tmp += 9;
    }
  }
L
liuruilong 已提交
523
#endif
W
wangliu 已提交
524
}
E
eclipsess 已提交
525

H
hjchen2 已提交
526 527 528 529 530 531
void DepthwiseConvAddBNRelu3x3s1p1(const framework::Tensor *input,
                                   const framework::Tensor *filter,
                                   framework::Tensor *output,
                                   const framework::Tensor *new_scale,
                                   const framework::Tensor *new_bias,
                                   bool if_relu) {
532
#if __ARM_NEON
E
eclipsess 已提交
533
  const float *input_data = input->data<float>();
E
eclipsess 已提交
534
  const float *filter_data = filter->data<float>();
E
eclipsess 已提交
535 536 537 538 539
  float *output_data = output->data<float>();
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const int batch_size = static_cast<int>(input->dims()[0]);
540 541 542 543 544 545 546 547 548
  const int input_channel = static_cast<int>(input->dims()[1]);

  const int input_height = static_cast<int>(input->dims()[2]);
  const int input_width = static_cast<int>(input->dims()[3]);
  const int output_height = static_cast<int>(output->dims()[2]);
  const int output_width = static_cast<int>(output->dims()[3]);

  const int hxw = input_height * input_width;

E
eclipsess 已提交
549 550 551
  //  const int l = input_height;
  const int h = input_height;
  const int w = input_width;
E
eclipsess 已提交
552 553
  float32x4_t vzero = vdupq_n_f32(0);

554
  for (int b = 0; b < batch_size; b++) {
555
#pragma omp parallel for
556
    for (int c = 0; c < input_channel; c++) {
557 558 559 560 561
      const float *filter_data = filter->data<float>() + c * 9;
      const float *input_data = input->data<float>() + c * hxw;
      float *output_data = output->data<float>() + c * hxw;
      float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
      float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
562 563 564 565 566 567 568 569 570 571

      float w00 = filter_data[0];
      float w01 = filter_data[1];
      float w02 = filter_data[2];
      float w10 = filter_data[3];
      float w11 = filter_data[4];
      float w12 = filter_data[5];
      float w20 = filter_data[6];
      float w21 = filter_data[7];
      float w22 = filter_data[8];
E
eclipsess 已提交
572

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
      for (int i = 1; i < output_height - 1; i++) {
        float *output_ptr;
        float32x4_t in0, in1, in2, in3, in4, in5, tmp0, tmp1, tmp2, tmp3, tmp4,
            tmp5, out0;
        for (int m = 1; m < output_width - 4; m += 4) {
          output_ptr = output_data + i * output_width + m;
          in0 = vld1q_f32(input_data + (i - 1) * input_width + m - 1);
          in1 = vld1q_f32(input_data + (i - 1) * input_width + m + 3);
          in2 = vld1q_f32(input_data + i * input_width + m - 1);
          in3 = vld1q_f32(input_data + i * input_width + m + 3);
          in4 = vld1q_f32(input_data + (i + 1) * input_width + m - 1);
          in5 = vld1q_f32(input_data + (i + 1) * input_width + m + 3);

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

          out0 = vmulq_n_f32(in0, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);

          out0 = vmlaq_f32(vnewbias, vnewscale, out0);
          if (if_relu) {
            out0 = vmaxq_f32(out0, vzero);
          }
          vst1q_f32(output_ptr, out0);
        }
        int m;
        for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
        }

        for (int j = m; j < output_width - 1; j++) {
          output_data[i * output_width + j] =
              input_data[(i - 1) * input_width + j - 1] * w00 +
              input_data[(i - 1) * input_width + j] * w01 +
              input_data[(i - 1) * input_width + j + 1] * w02 +
              input_data[(i)*input_width + j - 1] * w10 +
              input_data[(i)*input_width + j] * w11 +
              input_data[(i)*input_width + j + 1] * w12 +
              input_data[(i + 1) * input_width + j - 1] * w20 +
              input_data[(i + 1) * input_width + j] * w21 +
              input_data[(i + 1) * input_width + j + 1] * w22;
          output_data[i * output_width + j] =
              newscale_data[c] * output_data[i * output_width + j] +
              newbias_data[c];
          if (if_relu) {
            output_data[i * output_width + j] =
                output_data[i * output_width + j] < 0
                    ? 0
                    : output_data[i * output_width + j];
          }
        }
      }

E
eclipsess 已提交
636
      output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
E
eclipsess 已提交
637 638 639 640 641 642 643 644 645 646
                       w21 * input_data[w] + w22 * input_data[w + 1];
      output_data[w - 1] = w10 * input_data[w - 2] + w11 * input_data[w - 1] +
                           w20 * input_data[2 * w - 2] +
                           w21 * input_data[2 * w - 1];
      output_data[(h - 1) * w] =
          w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w + 1] +
          w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
      output_data[h * w - 1] =
          w00 * input_data[h * w - w - 2] + w01 * input_data[h * w - w - 1] +
          w10 * input_data[h * w - 2] + w11 * input_data[h * w - 1];
647
      output_data[0] = output_data[0] * newscale_data[c] + newbias_data[c];
E
eclipsess 已提交
648 649 650 651 652 653
      output_data[w - 1] =
          output_data[w - 1] * newscale_data[c] + newbias_data[c];
      output_data[(h - 1) * w] =
          output_data[(h - 1) * w] * newscale_data[c] + newbias_data[c];
      output_data[h * w - 1] =
          output_data[h * w - 1] * newscale_data[c] + newbias_data[c];
654

E
eclipsess 已提交
655 656
      if (if_relu) {
        output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
E
eclipsess 已提交
657 658 659 660 661
        output_data[w - 1] = output_data[w - 1] < 0 ? 0 : output_data[w - 1];
        output_data[(h - 1) * w] =
            output_data[(h - 1) * w] < 0 ? 0 : output_data[(h - 1) * w];
        output_data[h * w - 1] =
            output_data[h * w - 1] < 0 ? 0 : output_data[h * w - 1];
E
eclipsess 已提交
662
      }
E
eclipsess 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
      for (int i = 1; i < h - 1; ++i) {
        output_data[i * w] =
            w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1] +
            w11 * input_data[i * w] + w12 * input_data[i * w + 1] +
            w21 * input_data[i * w + w] + w22 * input_data[i * w + w + 1];

        output_data[i * w + w - 1] = w00 * input_data[i * w + w - 1 - w - 1] +
                                     w01 * input_data[i * w + w - 1 - w] +
                                     w10 * input_data[i * w + w - 1 - 1] +
                                     w11 * input_data[i * w + w - 1] +
                                     w20 * input_data[i * w + w - 1 + w - 1] +
                                     w21 * input_data[i * w + w - 1 + w];
        output_data[i * w] =
            output_data[i * w] * newscale_data[c] + newbias_data[c];
        output_data[i * w + w - 1] =
            output_data[i * w + w - 1] * newscale_data[c] + newbias_data[c];
679

E
eclipsess 已提交
680
        if (if_relu) {
E
eclipsess 已提交
681 682 683
          output_data[i * w] = output_data[i * w] < 0 ? 0 : output_data[i * w];
          output_data[i * w + w - 1] =
              output_data[i * w + w - 1] < 0 ? 0 : output_data[i * w + w - 1];
E
eclipsess 已提交
684 685 686
        }
      }

687 688 689 690 691 692 693 694
      int m;
      for (m = 1; m < output_width - 4; m += 4) {
        float *output_ptr = output_data + m;
        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + m - 1);
        in1 = vld1q_f32(input_data + m + 3);
        in2 = vld1q_f32(input_data + input_width + m - 1);
        in3 = vld1q_f32(input_data + input_width + m + 3);
E
eclipsess 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = vmulq_n_f32(in0, w10);
        out0 = vmlaq_n_f32(out0, tmp0, w11);
        out0 = vmlaq_n_f32(out0, tmp1, w12);
        out0 = vmlaq_n_f32(out0, in2, w20);
        out0 = vmlaq_n_f32(out0, tmp2, w21);
        out0 = vmlaq_n_f32(out0, tmp3, w22);
        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
        if (if_relu) {
          out0 = vmaxq_f32(out0, vzero);
        }
        vst1q_f32(output_ptr, out0);
710
      }
711 712

      for (m = 1; (m + 3) < output_width - 1; m += 4) {
713 714 715 716 717 718 719 720
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[j] = input_data[j - 1] * w10 + input_data[j] * w11 +
                         input_data[j + 1] * w12 +
                         input_data[input_width + j - 1] * w20 +
                         input_data[input_width + j] * w21 +
                         input_data[input_width + j + 1] * w22;
        output_data[j] = output_data[j] * newscale_data[c] + newbias_data[c];
E
eclipsess 已提交
721

722 723 724 725
        if (if_relu) {
          output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
        }
      }
E
eclipsess 已提交
726

727
      for (m = 1; m < output_width - 4; m += 4) {
728 729
        float *output_ptr =
            output_data + (output_height - 1) * output_width + m;
E
eclipsess 已提交
730

731 732 733 734 735 736 737 738 739 740
        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
        in0 = vld1q_f32(input_data + (output_height - 2) * input_width + m - 1);
        in1 = vld1q_f32(input_data + (output_height - 2) * input_width + m + 3);
        in2 = vld1q_f32(input_data + (output_height - 1) * input_width + m - 1);
        in3 = vld1q_f32(input_data + (output_height - 1) * input_width + m + 3);
        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);
        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);
        out0 = vmulq_n_f32(in0, w00);
E
eclipsess 已提交
741 742
        out0 = vmlaq_n_f32(out0, tmp0, w01);
        out0 = vmlaq_n_f32(out0, tmp1, w02);
743
        out0 = vmlaq_n_f32(out0, in2, w10);
E
eclipsess 已提交
744 745 746 747 748 749
        out0 = vmlaq_n_f32(out0, tmp2, w11);
        out0 = vmlaq_n_f32(out0, tmp3, w12);
        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
        if (if_relu) {
          out0 = vmaxq_f32(out0, vzero);
        }
750
        vst1q_f32(output_ptr, out0);
E
eclipsess 已提交
751
      }
752 753 754 755 756 757 758 759 760 761 762 763 764 765
      for (m = 1; (m + 3) < output_width - 1; m = m + 4) {
      }
      for (int j = m; j < output_width - 1; j++) {
        output_data[(output_height - 1) * input_width + j] =
            input_data[(output_height - 2) * input_width + j - 1] * w00 +
            input_data[(output_height - 2) * input_width + j] * w01 +
            input_data[(output_height - 2) * input_width + j + 1] * w02 +
            input_data[(output_height - 1) * input_width + j - 1] * w10 +
            input_data[(output_height - 1) * input_width + j] * w11 +
            input_data[(output_height - 1) * input_width + j + 1] * w12;
        output_data[(output_height - 1) * output_width + j] =
            output_data[(output_height - 1) * output_width + j] *
                newscale_data[c] +
            newbias_data[c];
E
eclipsess 已提交
766

767 768 769 770 771 772
        if (if_relu) {
          output_data[(output_height - 1) * output_width + j] =
              output_data[(output_height - 1) * output_width + j] < 0
                  ? 0
                  : output_data[(output_height - 1) * output_width + j];
        }
E
eclipsess 已提交
773
      }
774 775
    }
  }
E
eclipsess 已提交
776

777
    /*
778 779 780 781 782 783 784 785
        const float *input_data = input->data<float>();
        const float *filter_data = filter->data<float>();
        float *output_data = output->data<float>();
        const float *newscale_data = new_scale->data<float>();
        const float *newbias_data = new_bias->data<float>();

        const int h = static_cast<int>(input->dims()[2]);
        const int w = static_cast<int>(input->dims()[3]);
E
eclipsess 已提交
786
//        const int l = h;
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

        const int batch_size = static_cast<int>(input->dims()[0]);
        const int c = static_cast<int>(input->dims()[1]);
        const int hxw = h * w;
        float32x4_t vnewbias = vdupq_n_f32(0.0);
        float32x4_t vnewscale = vdupq_n_f32(1.0);
        float32x4_t vzero = vdupq_n_f32(0);

        for (int b = 0; b < batch_size; ++b) {
          const float *filter_data_tmp = filter_data;

          for (int j = 0; j < c; ++j) {
            vnewbias = vdupq_n_f32(newbias_data[j]);
            vnewscale = vdupq_n_f32(newscale_data[j]);

E
eclipsess 已提交
802
            int w_mid = w - 2;  // l=1->l_mid=-1,l=2->l_mid=0
803 804 805 806 807 808 809 810 811 812 813
            float w00 = filter_data_tmp[0];
            float w01 = filter_data_tmp[1];
            float w02 = filter_data_tmp[2];
            float w10 = filter_data_tmp[3];
            float w11 = filter_data_tmp[4];
            float w12 = filter_data_tmp[5];
            float w20 = filter_data_tmp[6];
            float w21 = filter_data_tmp[7];
            float w22 = filter_data_tmp[8];

            output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
E
eclipsess 已提交
814 815 816 817 818 819 820 821 822 823 824 825
                             w21 * input_data[w] + w22 * input_data[w + 1];

            output_data[w - 1] = w10 * input_data[w - 2] + w11 * input_data[w -
       1] + w20 * input_data[2 * w - 2] + w21 * input_data[2 * w - 1];

            output_data[(h - 1) * w] =
                w01 * input_data[(h - 2) * w] + w02 * input_data[(h - 2) * w +
       1] + w11 * input_data[(h - 1) * w] + w12 * input_data[(h - 1) * w + 1];
            output_data[h * w - 1] = w00 * input_data[h*w-w-2] +
                                     w01 * input_data[h*w-w-1] +
                                     w10 * input_data[h * w - 2] +
                                     w11 * input_data[h * w - 1];
826
            output_data[0] = output_data[0] * newscale_data[j] +
E
eclipsess 已提交
827 828 829 830 831
       newbias_data[j]; output_data[w - 1] = output_data[w - 1] *
       newscale_data[j] + newbias_data[j]; output_data[(h - 1) * w] =
                output_data[(h - 1) * w] * newscale_data[j] + newbias_data[j];
            output_data[h * w - 1] =
                output_data[h * w - 1] * newscale_data[j] + newbias_data[j];
E
eclipsess 已提交
832

833 834
            if (if_relu) {
              output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
E
eclipsess 已提交
835 836 837 838
              output_data[w - 1] = output_data[w - 1] < 0 ? 0 : output_data[w -
       1]; output_data[(h - 1) * w] = output_data[(h - 1) * w] < 0 ? 0 :
       output_data[(h - 1) * w]; output_data[h * w - 1] = output_data[h * w - 1]
       < 0 ? 0 : output_data[h * w - 1];
839
            }
E
eclipsess 已提交
840 841 842 843 844 845 846 847 848 849 850
            for (int i = 1; i < h - 1; ++i) {
              output_data[i * w] =
                  w01 * input_data[i * w - w] + w02 * input_data[i * w - w + 1]
       + w11 * input_data[i * w] + w12 * input_data[i * w + 1] + w21 *
       input_data[i * w + w] + w22 * input_data[i * w + w + 1]; output_data[i *
       w + w - 1] = w00 * input_data[i * w + w - 1 - w - 1] + w01 * input_data[i
       * w + w - 1 - w] + w10 * input_data[i * w + w - 1 - 1] + w11 *
       input_data[i * w + w - 1] + w20 * input_data[i * w + w - 1 + w - 1] + w21
       * input_data[i * w + w - 1 + w]; output_data[i * w] = output_data[i * w]
       * newscale_data[j] + newbias_data[j]; output_data[i * w + w - 1] =
                  output_data[i * w + w - 1] * newscale_data[j] +
851 852 853
       newbias_data[j];

              if (if_relu) {
E
eclipsess 已提交
854 855 856
                output_data[i * w] = output_data[i * w] < 0 ? 0 : output_data[i
       * w]; output_data[i * w + w - 1] = output_data[i * w + w - 1] < 0 ? 0 :
       output_data[i * w + w - 1];
857 858
              }
            }
E
eclipsess 已提交
859

860 861 862 863 864
            // top 1 row and bottom 1 row
            const float *input_tmp = input_data;

            float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1,
       tmp2, tmp3, tmp4, tmp5, out0; in0 = vld1q_f32(input_tmp); in2 =
E
eclipsess 已提交
865 866 867
       vld1q_f32(input_tmp + w); const float *input_tmp_end = input_tmp + (h -
       2) * w; in4 = vld1q_f32(input_tmp_end); in6 = vld1q_f32(input_tmp_end +
       w); int c_mid = w_mid; auto output_ptr = output_data + 1; for (; c_mid >
868
       3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 =
E
eclipsess 已提交
869
       vld1q_f32(input_tmp + w + 4);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889

              tmp0 = vextq_f32(in0, in1, 1);
              tmp1 = vextq_f32(in0, in1, 2);

              tmp2 = vextq_f32(in2, in3, 1);
              tmp3 = vextq_f32(in2, in3, 2);

              out0 = vmulq_n_f32(in0, w10);
              out0 = vmlaq_n_f32(out0, tmp0, w11);
              out0 = vmlaq_n_f32(out0, tmp1, w12);
              out0 = vmlaq_n_f32(out0, in2, w20);
              out0 = vmlaq_n_f32(out0, tmp2, w21);
              out0 = vmlaq_n_f32(out0, tmp3, w22);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
              vst1q_f32(output_ptr, out0);

              in5 = vld1q_f32(input_tmp_end + 4);
E
eclipsess 已提交
890
              in7 = vld1q_f32(input_tmp_end + w + 4);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

              tmp0 = vextq_f32(in4, in5, 1);
              tmp1 = vextq_f32(in4, in5, 2);
              tmp2 = vextq_f32(in6, in7, 1);
              tmp3 = vextq_f32(in6, in7, 2);

              out0 = vmulq_n_f32(in4, w00);
              out0 = vmlaq_n_f32(out0, tmp0, w01);
              out0 = vmlaq_n_f32(out0, tmp1, w02);
              out0 = vmlaq_n_f32(out0, in6, w10);
              out0 = vmlaq_n_f32(out0, tmp2, w11);
              out0 = vmlaq_n_f32(out0, tmp3, w12);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
E
eclipsess 已提交
907
              vst1q_f32(output_ptr + (h - 1) * w, out0);
908 909 910 911 912 913 914 915 916 917

              // can optimize to each 8 stride.
              input_tmp += 4;
              input_tmp_end += 4;
              output_ptr += 4;
              in0 = in1;
              in2 = in3;
              in4 = in5;
              in6 = in7;
            }
E
eclipsess 已提交
918

919
            // top right pad
E
eclipsess 已提交
920 921
            float32x4_t pad0 = vdupq_n_f32(input_data[w - 1]);
            float32x4_t pad1 = vdupq_n_f32(input_data[2 * w - 1]);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

            tmp0 = vextq_f32(in0, pad0, 1);
            tmp1 = vextq_f32(in0, pad0, 2);
            tmp2 = vextq_f32(in2, pad1, 1);
            tmp3 = vextq_f32(in2, pad1, 2);

            out0 = vmulq_n_f32(in0, w10);
            out0 = vmlaq_n_f32(out0, tmp0, w11);
            out0 = vmlaq_n_f32(out0, tmp1, w12);
            out0 = vmlaq_n_f32(out0, in2, w20);
            out0 = vmlaq_n_f32(out0, tmp2, w21);
            out0 = vmlaq_n_f32(out0, tmp3, w22);
            out0 = vmlaq_f32(vnewbias, vnewscale, out0);
            if (if_relu) {
              out0 = vmaxq_f32(out0, vzero);
            }
            for (int i = 0; i < c_mid; ++i) {
              if (i == 0) {
                vst1q_lane_f32(output_ptr + i, out0, 0);
              }
              if (i == 1) {
                vst1q_lane_f32(output_ptr + i, out0, 1);
              }
              if (i == 2) {
                vst1q_lane_f32(output_ptr + i, out0, 2);
              }
            }
949

950
            // bottom right pad
E
eclipsess 已提交
951 952
            float32x4_t pad2 = vdupq_n_f32(input_data[h * w - 1 - w]);
            float32x4_t pad3 = vdupq_n_f32(input_data[h * w - 1]);
953

954 955 956 957
            tmp0 = vextq_f32(in4, pad2, 1);
            tmp1 = vextq_f32(in4, pad2, 2);
            tmp2 = vextq_f32(in6, pad3, 1);
            tmp3 = vextq_f32(in6, pad3, 2);
958

959
            out0 = vmulq_n_f32(in4, w00);
960 961
            out0 = vmlaq_n_f32(out0, tmp0, w01);
            out0 = vmlaq_n_f32(out0, tmp1, w02);
962
            out0 = vmlaq_n_f32(out0, in6, w10);
963 964 965 966 967 968
            out0 = vmlaq_n_f32(out0, tmp2, w11);
            out0 = vmlaq_n_f32(out0, tmp3, w12);
            out0 = vmlaq_f32(vnewbias, vnewscale, out0);
            if (if_relu) {
              out0 = vmaxq_f32(out0, vzero);
            }
969 970
            for (int i = 0; i < c_mid; ++i) {
              if (i == 0) {
E
eclipsess 已提交
971
                vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 0);
972 973
              }
              if (i == 1) {
E
eclipsess 已提交
974
                vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 1);
975 976
              }
              if (i == 2) {
E
eclipsess 已提交
977
                vst1q_lane_f32(output_ptr + (h - 1) * w + i, out0, 2);
978 979 980 981 982
              }
            }
            // mid


E
eclipsess 已提交
983 984 985
            for (int i = 0; i < h - 2; ++i) {
              auto output_ptr = output_data + (i + 1) * w + 1;
              input_tmp = input_data + i * w;
986
              auto in0_tmp = vld1q_f32(input_tmp);
E
eclipsess 已提交
987 988 989
              auto in2_tmp = vld1q_f32(input_tmp + w);
              auto in4_tmp = vld1q_f32(input_tmp + w + w);
              c_mid = w_mid;
990 991
              for (; c_mid > 3; c_mid -= 4) {
                auto in1_tmp = vld1q_f32(input_tmp + 4);
E
eclipsess 已提交
992 993
                auto in3_tmp = vld1q_f32(input_tmp + w + 4);
                auto in5_tmp = vld1q_f32(input_tmp + w + w + 4);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

                tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
                tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
                tmp2 = vextq_f32(in2_tmp, in3_tmp, 1);
                tmp3 = vextq_f32(in2_tmp, in3_tmp, 2);
                tmp4 = vextq_f32(in4_tmp, in5_tmp, 1);
                tmp5 = vextq_f32(in4_tmp, in5_tmp, 2);

                out0 = vmulq_n_f32(in0_tmp, w00);
                out0 = vmlaq_n_f32(out0, tmp0, w01);
                out0 = vmlaq_n_f32(out0, tmp1, w02);
                out0 = vmlaq_n_f32(out0, in2_tmp, w10);
                out0 = vmlaq_n_f32(out0, tmp2, w11);
                out0 = vmlaq_n_f32(out0, tmp3, w12);
                out0 = vmlaq_n_f32(out0, in4_tmp, w20);
                out0 = vmlaq_n_f32(out0, tmp4, w21);
                out0 = vmlaq_n_f32(out0, tmp5, w22);
                out0 = vmlaq_f32(vnewbias, vnewscale, out0);
                if (if_relu) {
                  out0 = vmaxq_f32(out0, vzero);
                }
                vst1q_f32(output_ptr, out0);
1016

1017 1018 1019 1020 1021 1022
                output_ptr += 4;
                input_tmp += 4;
                in0_tmp = in1_tmp;
                in2_tmp = in3_tmp;
                in4_tmp = in5_tmp;
              }
1023

E
eclipsess 已提交
1024 1025 1026
              float32x4_t pad0 = vdupq_n_f32(input_data[i * w + w - 1]);
              float32x4_t pad1 = vdupq_n_f32(input_data[i * w + w - 1 + w]);
              float32x4_t pad2 = vdupq_n_f32(input_data[i * w + w - 1 + w + w]);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

              tmp0 = vextq_f32(in0_tmp, pad0, 1);
              tmp1 = vextq_f32(in0_tmp, pad0, 2);
              tmp2 = vextq_f32(in2_tmp, pad1, 1);
              tmp3 = vextq_f32(in2_tmp, pad1, 2);
              tmp4 = vextq_f32(in4_tmp, pad2, 1);
              tmp5 = vextq_f32(in4_tmp, pad2, 2);

              out0 = vmulq_n_f32(in0_tmp, w00);
              out0 = vmlaq_n_f32(out0, tmp0, w01);
              out0 = vmlaq_n_f32(out0, tmp1, w02);
              out0 = vmlaq_n_f32(out0, in2_tmp, w10);
              out0 = vmlaq_n_f32(out0, tmp2, w11);
              out0 = vmlaq_n_f32(out0, tmp3, w12);
              out0 = vmlaq_n_f32(out0, in4_tmp, w20);
              out0 = vmlaq_n_f32(out0, tmp4, w21);
              out0 = vmlaq_n_f32(out0, tmp5, w22);
              out0 = vmlaq_f32(vnewbias, vnewscale, out0);
              if (if_relu) {
                out0 = vmaxq_f32(out0, vzero);
              }
              for (int i = 0; i < c_mid; ++i) {
                if (i == 0) {
                  vst1q_lane_f32(output_ptr + i, out0, 0);
                }
                if (i == 1) {
                  vst1q_lane_f32(output_ptr + i, out0, 1);
                }
                if (i == 2) {
                  vst1q_lane_f32(output_ptr + i, out0, 2);
                }
              }
1059
            }
1060 1061 1062
            output_data += hxw;
            input_data += hxw;
            filter_data_tmp += 9;
E
eclipsess 已提交
1063 1064
          }
        }
1065 1066
    */

L
liuruilong 已提交
1067
#endif
E
eclipsess 已提交
1068
}
1069

E
eclipsess 已提交
1070
/// w!=h not fix
H
hjchen2 已提交
1071 1072 1073 1074 1075 1076
void DepthwiseConvAddBNRelu3x3s2p1(const framework::Tensor *input,
                                   const framework::Tensor *filter,
                                   framework::Tensor *output,
                                   const framework::Tensor *new_scale,
                                   const framework::Tensor *new_bias,
                                   bool if_relu) {
1077
#if __ARM_NEON
L
liuruilong 已提交
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  const int _kernel_size = 3;
  const int stride_height = 2;
  const int stride_width = 2;
  const int padding_height = 1;
  const int padding_width = 1;
  const float zero = 0;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;
  const int filter_channel_stride = 9;
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();

  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  const int filter_batch_stride = output_channels * output_channel_stride;
  const float *pos1, *pos2, *pos3, *filter1, *filter2, *filter3, *output_ptr;
  int hstart, wstart, hend, wend;
  float result;
  for (int i = 0; i < batch_size; ++i) {
    for (int c = 0; c < output_channels; ++c) {
      filter1 = filter_data;
      filter2 = filter1 + 3;
      filter3 = filter2 + 3;

      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
          hstart = ph * stride_height - padding_height;
          wstart = pw * stride_width - padding_width;
H
hjchen2 已提交
1122 1123 1124 1125 1126 1127
          hend = std::min(hstart + _kernel_size, input_height + padding_height);
          wend = std::min(wstart + _kernel_size, input_width + padding_width);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          hend = std::min(hend, input_height);
          wend = std::min(wend, input_width);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
          pos1 = input_data + hstart * input_width + wstart;
          pos2 = input_data + (hstart + 1) * input_width + wstart;
          pos3 = input_data + (hstart + 2) * input_width + wstart;
          output_ptr = output_data + ph * output_width + pw;

          if (hend - hstart != 3 || wend - wstart != 3) {
            result = 0;
            float fake_input[9] = {0};
            if (hstart == 0 && wstart == 0) {
              // 左上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k -
                                   (3 - wend)];
                  }
                }
              }
            } else if (hstart == 0 && wend == input_width) {
              // 右上角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend && k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height && wstart == 0) {
              // 左下角

              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - 1 - hstart && k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k - (3 - wend)];
                  }
                }
              }
            } else if (hend == input_height && wend == input_width) {
              // 右下角
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1 &&
                      k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            } else if (hstart == 0) {
              // 顶部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j >= 3 - hend) {
                    fake_input[3 * j + k] =
                        input_data[(j - (3 - hend)) * input_width + k + wstart];
                  }
                }
              }

            } else if (hend == input_height) {
              // 底部
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (j <= input_height - hstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }

            } else if (wstart == 0) {
              // 左侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k >= 3 - wend) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width +
                                   (k - (3 - wend))];
                  }
                }
              }

            } else if (wend == input_width) {
              // 右侧
              for (int j = 0; j < 3; ++j) {
                for (int k = 0; k < 3; ++k) {
                  if (k <= input_width - wstart - 1) {
                    fake_input[3 * j + k] =
                        input_data[(j + hstart) * input_width + k + wstart];
                  }
                }
              }
            }
            for (int l = 0; l < 9; ++l) {
              result += fake_input[l] * filter1[l];
            }
            output_data[ph * output_width + pw] =
                newscale_data[c] * result + newbias_data[c];

            if (if_relu) {
              output_data[ph * output_width + pw] =
                  output_data[ph * output_width + pw] < 0
                      ? 0
                      : output_data[ph * output_width + pw];
            }
          } else {
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);

            const float32x4_t v_filter1 = vld1q_f32(filter1);
            const float32x4_t v_filter2 = vld1q_f32(filter2);
            const float32x4_t v_filter3 = vld1q_f32(filter3);
            float32x4_t mula = vmulq_f32(data1, v_filter1);
            mula = vmlaq_f32(mula, data2, v_filter2);
            mula = vmlaq_f32(mula, data3, v_filter3);
            float32x2_t res = vpadd_f32(
                vget_high_f32(vsetq_lane_f32(0, mula, 3)), vget_low_f32(mula));
            res = vpadd_f32(res, res);
            output_data[ph * output_width + pw] =
                vget_lane_f32(res, 0) * newscale_data[c] + newbias_data[c];

            if (if_relu) {
              output_data[ph * output_width + pw] =
                  output_data[ph * output_width + pw] < 0
                      ? 0
                      : output_data[ph * output_width + pw];
            }
          }
        }
      }
      input_data += input_channel_stride;
      output_data += output_channel_stride;
      filter_data += filter_channel_stride;
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
L
liuruilong 已提交
1270
#endif
1271
}
E
eclipsess 已提交
1272

H
hjchen2 已提交
1273 1274 1275 1276
void DepthwiseConv3x3s2p1v2(const framework::Tensor *input,
                            const framework::Tensor *filter,
                            framework::Tensor *output, framework::Tensor bias,
                            bool if_bias) {
1277
#if __ARM_NEON
E
eclipsess 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  float *output_data = output->data<float>();
  const float *bias_data = bias.data<float>();

  const int in_h = static_cast<int>(input->dims()[2]);
  const int in_w = static_cast<int>(input->dims()[3]);
  const int out_h = static_cast<int>(output->dims()[2]);
  const int out_w = static_cast<int>(output->dims()[3]);
  const int out_l = out_h;
  const int in_l = in_h;
  const int inhxw = in_h * in_w;
  const int outhxw = out_h * out_w;
E
eclipsess 已提交
1291
  /// todo : fix if_pad when w != h
E
eclipsess 已提交
1292 1293
  const int if_pad_r = in_w - 1 == (out_w - 1) * 2 ? 1 : 0;
  const int if_pad_b = in_h - 1 == (out_h - 1) * 2 ? 1 : 0;
E
eclipsess 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const float *input_row_ptr;
  float *output_row_ptr;

  const int w_times = (out_w - 2) / 3;

  float32x4_t vbias = vdupq_n_f32(0.0);

E
eclipsess 已提交
1303
  float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
E
eclipsess 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
  float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
  int out2in_mid;
  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = batch_size; b > 0; --b) {
    const float *filter_data_tmp = filter_data;
    for (int j = 0; j < c; ++j) {
      auto output_data_tmp = output_data + j * out_h * out_w;
      auto input_data_tmp = input_data + j * in_h * in_w;
      auto input_const = input_data_tmp;

      if (if_bias) {
        vbias = vdupq_n_f32(bias_data[j]);
      }

      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      int h_mid = 0;

      for (; h_mid < out_h - 1; h_mid++) {
        input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
        output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

        for (int w4 = 0; w4 < w_times + 1; w4++) {
          if (h_mid == 0) {
            elewise_res1 = zero;
            elewise_res0 = zero;
            elewise_res2 = zero;
          } else {
            elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
            elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
            elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
          }
          input_buff_mid = vld2q_f32(input_row_ptr);
          input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

          elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
          elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
          elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);

          res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                           vaddq_f32(elewise_res0, elewise_res1));
          res3 = vaddq_f32(res3, vbias);
          vst1q_f32(output_row_ptr, res3);

          input_row_ptr += 6;
          output_row_ptr += 3;
        }
      }
      clock();

      input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
      output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

      for (int w4 = 0; w4 < w_times + 1; w4++) {
        elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
        elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
        elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);

        input_buff_mid = vld2q_f32(input_row_ptr);
        input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

        elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
        elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
        elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

E
eclipsess 已提交
1384
        if (!if_pad_b) {
E
eclipsess 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);
        }
        res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                         vaddq_f32(elewise_res0, elewise_res1));
        res3 = vaddq_f32(res3, vbias);

        if ((w4 != w_times)) {
          vst1q_f32(output_row_ptr, res3);
        } else {
E
eclipsess 已提交
1399
          if (out_w - 2 - w_times * 3 == 1) {
E
eclipsess 已提交
1400
            vst1q_lane_f32(output_row_ptr, res3, 0);
E
eclipsess 已提交
1401
          } else if (out_w - 2 - w_times * 3 == 2) {
E
eclipsess 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410
            vst1q_lane_f32(output_row_ptr, res3, 0);
            vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          }
        }
        input_row_ptr += 6;
        output_row_ptr += 3;
      }

      output_data_tmp[0] = input_const[0] * w11 + input_const[1] * w12 +
E
eclipsess 已提交
1411 1412
                           input_const[in_w] * w21 +
                           input_const[in_w + 1] * w22;
E
eclipsess 已提交
1413

E
eclipsess 已提交
1414
      out2in_mid = (out_w - 1) * 2;
E
eclipsess 已提交
1415
      output_data_tmp[out_w - 1] =
E
eclipsess 已提交
1416 1417 1418
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          w20 * input_const[out2in_mid + in_w - 1] +
          w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1419 1420
          (1 - if_pad_r) * (w12 * input_const[out2in_mid + 1] +
                            w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1421

E
eclipsess 已提交
1422
      out2in_mid = (out_h - 1) * 2 * in_w;
E
eclipsess 已提交
1423

E
eclipsess 已提交
1424
      output_data_tmp[out_w * (out_h - 1)] =
E
eclipsess 已提交
1425 1426 1427
          w01 * input_const[out2in_mid - in_w] +
          w02 * input_const[out2in_mid - in_w + 1] +
          w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid + 1] +
E
eclipsess 已提交
1428 1429
          (1 - if_pad_b) * (w21 * input_const[out2in_mid + in_w] +
                            w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1430
      out2in_mid = (out_h - 1) * 2 * in_w + (out_w - 1) * 2;
E
eclipsess 已提交
1431

E
eclipsess 已提交
1432
      output_data_tmp[out_h * out_w - 1] =
E
eclipsess 已提交
1433 1434 1435
          w00 * input_const[out2in_mid - in_w - 1] +
          w01 * input_const[out2in_mid - in_w] +
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
E
eclipsess 已提交
1436 1437 1438 1439 1440 1441
          (1 - if_pad_r) * (w20 * input_const[out2in_mid + in_w - 1] +
                            w21 * input_const[out2in_mid + in_w]) +
          (1 - if_pad_b) * (w02 * input_const[out2in_mid - in_w + 1] +
                            w12 * input_const[out2in_mid + 1]) +
          (1 - if_pad_r) * (1 - if_pad_b) * w22 *
              input_const[out2in_mid + in_w + 1];
E
eclipsess 已提交
1442 1443
      if (if_bias) {
        output_data_tmp[0] += bias_data[j];
E
eclipsess 已提交
1444 1445 1446
        output_data_tmp[out_w - 1] += bias_data[j];
        output_data_tmp[out_w * (out_h - 1)] += bias_data[j];
        output_data_tmp[out_h * out_w - 1] += bias_data[j];
E
eclipsess 已提交
1447 1448 1449
      }
      for (int i = 1; i < out_h - 1; i++) {
        out2in_mid = i * 2 * in_w;
E
eclipsess 已提交
1450
        output_data_tmp[i * out_w] = w01 * input_const[out2in_mid - in_w] +
E
eclipsess 已提交
1451 1452 1453 1454 1455 1456
                                     w02 * input_const[out2in_mid - in_w + 1] +
                                     w11 * input_const[out2in_mid] +
                                     w12 * input_const[out2in_mid + 1] +
                                     w21 * input_const[out2in_mid + in_w] +
                                     w22 * input_const[out2in_mid + in_w + 1];

E
eclipsess 已提交
1457
        out2in_mid = i * 2 * in_w + (out_w - 1) * 2;
E
eclipsess 已提交
1458
        output_data_tmp[i * out_w + out_w - 1] =
E
eclipsess 已提交
1459 1460 1461 1462 1463
            w00 * input_const[out2in_mid - in_w - 1] +
            w01 * input_const[out2in_mid - in_w] +
            w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
            w20 * input_const[out2in_mid + in_w - 1] +
            w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1464 1465 1466
            (1 - if_pad_r) * (w02 * input_const[out2in_mid - in_w + 1] +
                              w12 * input_const[out2in_mid + 1] +
                              w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1467
        if (if_bias) {
E
eclipsess 已提交
1468 1469
          output_data_tmp[i * out_w] += bias_data[j];
          output_data_tmp[i * out_w + out_w - 1] += bias_data[j];
E
eclipsess 已提交
1470 1471 1472 1473 1474 1475 1476
        }
      }
      filter_data_tmp += 9;
    }
    input_data += inhxw * c;
    output_data += outhxw * c;
  }
L
liuruilong 已提交
1477
#endif
E
eclipsess 已提交
1478 1479
}

H
hjchen2 已提交
1480 1481 1482 1483 1484 1485
void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input,
                                     const framework::Tensor *filter,
                                     framework::Tensor *output,
                                     const framework::Tensor *new_scale,
                                     const framework::Tensor *new_bias,
                                     bool if_relu) {
1486
#if __ARM_NEON
1487
  // #ifdef _OPENMP
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
  //  const float *newscale_data = new_scale->data<float>();
  //  const float *newbias_data = new_bias->data<float>();
  //
  //  const int batch_size = static_cast<int>(input->dims()[0]);
  //  const int input_channel = static_cast<int>(input->dims()[1]);
  //
  //  const int input_height = static_cast<int>(input->dims()[2]);
  //  const int input_width = static_cast<int>(input->dims()[3]);
  //  const int output_height = static_cast<int>(output->dims()[2]);
  //  const int output_width = static_cast<int>(output->dims()[3]);
  //  const int inhxw = input_height * input_width;
  //  const int outhxw = output_height * output_width;
  //
  //  float32x4_t zero = vdupq_n_f32(0.0);
  //  for (int b = 0; b < batch_size; b++) {
  //    #pragma omp parallel for
  //    for (int c = 0; c < input_channel; c++) {
  //      const float *filter_data = filter->data<float>() + c * 9;
  //      const float *input_data = input->data<float>() + c * inhxw;
  //      float *output_data = output->data<float>() + c * outhxw;
  //      float32x4_t vnewbias = vdupq_n_f32(newbias_data[c]);
  //      float32x4_t vnewscale = vdupq_n_f32(newscale_data[c]);
  //
  //      float w00 = filter_data[0];
  //      float w01 = filter_data[1];
  //      float w02 = filter_data[2];
  //      float w10 = filter_data[3];
  //      float w11 = filter_data[4];
  //      float w12 = filter_data[5];
  //      float w20 = filter_data[6];
  //      float w21 = filter_data[7];
  //      float w22 = filter_data[8];
  //
  //      int m;
  //      for (m = 1; m < output_width - 2; m = m + 3) {
  //        float *output_ptr = output_data + m;
  //        float32x4x2_t input_buff_mid{}, input_buff_bottom{};
  //        float32x4_t in0, in1, in2, in3, tmp0, tmp1, tmp2, tmp3, out0;
  //        input_buff_mid = vld2q_f32(input_data + (2 * m - 1));
  //        input_buff_bottom = vld2q_f32(input_data + input_width + (2 * m -
  //        1));
  //
  //        in0 = input_buff_mid.val[0];
  //        tmp0 = input_buff_mid.val[1];
  //        tmp1 = vextq_f32(in0, zero, 1);
  //
  //        in2 = input_buff_bottom.val[0];
  //        tmp2 = input_buff_bottom.val[1];
  //        tmp3 = vextq_f32(in2, zero, 1);
  //
  //        out0 = vmulq_n_f32(in0, w10);
  //        out0 = vmlaq_n_f32(out0, tmp0, w11);
  //        out0 = vmlaq_n_f32(out0, tmp1, w12);
  //        out0 = vmlaq_n_f32(out0, in2, w20);
  //        out0 = vmlaq_n_f32(out0, tmp2, w21);
  //        out0 = vmlaq_n_f32(out0, tmp3, w22);
  //        out0 = vmlaq_f32(vnewbias, vnewscale, out0);
  //        if (if_relu) {
  //          out0 = vmaxq_f32(out0, zero);
  //        }
  //        vst1q_lane_f32(output_ptr, out0, 0);
  //        vst1q_lane_f32(output_ptr + 1, out0, 1);
  //        vst1q_lane_f32(output_ptr + 2, out0, 2);
  //      }
  //      for (m = 1; m < output_width - 2; m += 3) {
  //      }
  //      for (int j = m; j < output_width; j++) {
  //        output_data[j] = input_data[2 * j - 1] * w10 + input_data[2 * j] *
  //        w11 +
  //                         input_data[2 * j + 1] * w12 +
  //                         input_data[2 * j - 1 + input_width] * w20 +
  //                         input_data[2 * j + input_width] * w21 +
  //                         input_data[2 * j + 1 + input_width] * w22;
  //        output_data[j] = newscale_data[c] * output_data[j] +
  //        newbias_data[c]; if (if_relu) {
  //          output_data[j] = output_data[j] < 0 ? 0 : output_data[j];
  //        }
  //      }
  //
  //      for (int i = 1; i < output_height; i += 1) {
  //        for (int m = 1; m < output_width - 2; m += 3) {
  //          float *output_ptr = output_data + i * output_width + m;
  //          float32x4x2_t input_buff_top{}, input_buff_mid{},
  //          input_buff_bottom{}; float32x4_t in0, in1, in2, in3, in4, in5,
  //          tmp0, tmp1, tmp2, tmp3,
  //              tmp4, tmp5, out0;
  //          input_buff_top =
  //              vld2q_f32(input_data + (2 * i - 1) * input_width + (2 * m -
  //              1));
  //          input_buff_mid =
  //              vld2q_f32(input_data + (2 * i) * input_width + (2 * m - 1));
  //          input_buff_bottom =
  //              vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m -
  //              1));
  //
  //          in0 = input_buff_top.val[0];
  //          tmp0 = input_buff_top.val[1];
  //          tmp1 = vextq_f32(in0, zero, 1);
  //
  //          in2 = input_buff_mid.val[0];
  //          tmp2 = input_buff_mid.val[1];
  //          tmp3 = vextq_f32(in2, zero, 1);
  //
  //          in4 = input_buff_bottom.val[0];
  //          tmp4 = input_buff_bottom.val[1];
  //          tmp5 = vextq_f32(in4, zero, 1);
  //
  //          out0 = vmulq_n_f32(in0, w00);
  //          out0 = vmlaq_n_f32(out0, tmp0, w01);
  //          out0 = vmlaq_n_f32(out0, tmp1, w02);
  //          out0 = vmlaq_n_f32(out0, in2, w10);
  //          out0 = vmlaq_n_f32(out0, tmp2, w11);
  //          out0 = vmlaq_n_f32(out0, tmp3, w12);
  //          out0 = vmlaq_n_f32(out0, in4, w20);
  //          out0 = vmlaq_n_f32(out0, tmp4, w21);
  //          out0 = vmlaq_n_f32(out0, tmp5, w22);
  //          out0 = vmlaq_f32(vnewbias, vnewscale, out0);
  //          if (if_relu) {
  //            out0 = vmaxq_f32(out0, zero);
  //          }
  //          vst1q_lane_f32(output_ptr, out0, 0);
  //          vst1q_lane_f32(output_ptr + 1, out0, 1);
  //          vst1q_lane_f32(output_ptr + 2, out0, 2);
  //        }
  //        int m;
  //        for (m = 1; m < output_width - 2; m += 3) {
  //        }
  //        for (int j = m; j < output_width; j++) {
  //          output_data[i * output_width + j] =
  //              input_data[(2 * i - 1) * input_width + 2 * j - 1] * w00 +
  //              input_data[(2 * i - 1) * input_width + 2 * j] * w01 +
  //              input_data[(2 * i - 1) * input_width + 2 * j + 1] * w02 +
  //              input_data[(2 * i) * input_width + 2 * j - 1] * w10 +
  //              input_data[(2 * i) * input_width + 2 * j] * w11 +
  //              input_data[(2 * i) * input_width + 2 * j + 1] * w12 +
  //              input_data[(2 * i + 1) * input_width + 2 * j - 1] * w20 +
  //              input_data[(2 * i + 1) * input_width + 2 * j] * w21 +
  //              input_data[(2 * i + 1) * input_width + 2 * j + 1] * w22;
  //          output_data[i * output_width + j] =
  //              newscale_data[c] * output_data[i * output_width + j] +
  //              newbias_data[c];
  //          if (if_relu) {
  //            output_data[i * output_width + j] =
  //                output_data[i * output_width + j] < 0
  //                    ? 0
  //                    : output_data[i * output_width + j];
  //          }
  //        }
  //      }
  //      output_data[0] = input_data[0] * w11 + input_data[1] * w12 +
  //                       input_data[input_height] * w21 +
  //                       input_data[input_height + 1] * w22;
  //
  //      output_data[0] = newscale_data[c] * output_data[0] + newbias_data[c];
  //      if (if_relu) {
  //        output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
  //      }
  //      for (int i = 1; i < output_height; i++) {
  //        output_data[i * output_width] =
  //            input_data[(2 * i - 1) * input_width] * w01 +
  //            input_data[(2 * i - 1) * input_width + 1] * w02 +
  //            input_data[(2 * i) * input_width] * w11 +
  //            input_data[(2 * i) * input_width + 1] * w12 +
  //            input_data[(2 * i + 1) * input_width] * w21 +
  //            input_data[(2 * i + 1) * input_width + 1] * w22;
  //
  //        output_data[i * output_width] =
  //            newscale_data[c] * output_data[i * output_width] +
  //            newbias_data[c];
  //        if (if_relu) {
  //          output_data[i * output_width] = output_data[i * output_width] < 0
  //                                              ? 0
  //                                              : output_data[i *
  //                                              output_width];
  //        }
  //      }
  //    }
  //  }
  //
1667
  // #else
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

  const float *input_data = input->data<float>();
  const float *filter_data = filter->data<float>();
  float *output_data = output->data<float>();
  const float *newscale_data = new_scale->data<float>();
  const float *newbias_data = new_bias->data<float>();

  const int in_h = static_cast<int>(input->dims()[2]);
  const int in_w = static_cast<int>(input->dims()[3]);
  const int out_h = static_cast<int>(output->dims()[2]);
  const int out_w = static_cast<int>(output->dims()[3]);
E
eclipsess 已提交
1679 1680
  //  const int out_l = out_h;
  //  const int in_l = in_h;
1681 1682
  const int inhxw = in_h * in_w;
  const int outhxw = out_h * out_w;
E
eclipsess 已提交
1683
  /// todo : fix if_pad when w != h
E
eclipsess 已提交
1684 1685
  const int if_pad_r = in_w - 1 == (out_w - 1) * 2 ? 1 : 0;
  const int if_pad_b = in_h - 1 == (out_h - 1) * 2 ? 1 : 0;
1686 1687 1688 1689 1690
  const int batch_size = static_cast<int>(input->dims()[0]);
  const int c = static_cast<int>(input->dims()[1]);
  const int w_times = (out_w - 2) / 3;
  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = batch_size; b > 0; --b) {
1691
#pragma omp parallel for
1692 1693 1694 1695 1696 1697 1698 1699
    for (int j = 0; j < c; j++) {
      const float *input_row_ptr;
      float *output_row_ptr;
      float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
      float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
      int out2in_mid;
      float32x4_t vnewbias = vdupq_n_f32(0.0);
      float32x4_t vnewscale = vdupq_n_f32(1.0);
1700 1701 1702
      auto output_data_tmp = output_data + j * out_h * out_w;
      auto input_data_tmp = input_data + j * in_h * in_w;
      auto input_const = input_data_tmp;
1703
      const float *filter_data_tmp = filter_data + 9 * j;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
      vnewbias = vdupq_n_f32(newbias_data[j]);
      vnewscale = vdupq_n_f32(newscale_data[j]);

      float w00 = filter_data_tmp[0];
      float w01 = filter_data_tmp[1];
      float w02 = filter_data_tmp[2];
      float w10 = filter_data_tmp[3];
      float w11 = filter_data_tmp[4];
      float w12 = filter_data_tmp[5];
      float w20 = filter_data_tmp[6];
      float w21 = filter_data_tmp[7];
      float w22 = filter_data_tmp[8];

      int h_mid = 0;

      for (; h_mid < out_h - 1; h_mid++) {
        input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
        output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

        for (int w4 = 0; w4 < w_times + 1; w4++) {
          if (h_mid == 0) {
            elewise_res1 = zero;
            elewise_res0 = zero;
            elewise_res2 = zero;
          } else {
            elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
            elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
            elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
          }
          input_buff_mid = vld2q_f32(input_row_ptr);
          input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

          elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
          elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
          elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);

          res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                           vaddq_f32(elewise_res0, elewise_res1));
          res3 = vmlaq_f32(vnewbias, vnewscale, res3);

          if (if_relu) {
            res3 = vmaxq_f32(res3, zero);
          }
1754 1755 1756
          vst1q_lane_f32(output_row_ptr, res3, 0);
          vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          vst1q_lane_f32(output_row_ptr + 2, res3, 2);
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

          input_row_ptr += 6;
          output_row_ptr += 3;
        }
      }
      clock();

      input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
      output_row_ptr = output_data_tmp + 1 + h_mid * out_w;

      for (int w4 = 0; w4 < w_times + 1; w4++) {
        elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
        elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
        elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);

        input_buff_mid = vld2q_f32(input_row_ptr);
        input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);

        elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1], w11);
        elewise_res0 = vmlaq_n_f32(elewise_res0, input_buff_mid.val[0], w10);
        elewise_res2 = vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);

E
eclipsess 已提交
1779
        if (!if_pad_b) {
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
          elewise_res1 =
              vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1], w21);
          elewise_res0 =
              vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0], w20);
          elewise_res2 =
              vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0], w22);
        }
        res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
                         vaddq_f32(elewise_res0, elewise_res1));
        res3 = vmlaq_f32(vnewbias, vnewscale, res3);

        if (if_relu) {
          res3 = vmaxq_f32(res3, zero);
        }
        if ((w4 != w_times)) {
1795 1796 1797
          vst1q_lane_f32(output_row_ptr, res3, 0);
          vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          vst1q_lane_f32(output_row_ptr + 2, res3, 2);
1798
        } else {
E
eclipsess 已提交
1799
          if (out_w - 2 - w_times * 3 == 1) {
1800
            vst1q_lane_f32(output_row_ptr, res3, 0);
E
eclipsess 已提交
1801
          } else if (out_w - 2 - w_times * 3 == 2) {
1802 1803 1804 1805 1806 1807 1808 1809 1810
            vst1q_lane_f32(output_row_ptr, res3, 0);
            vst1q_lane_f32(output_row_ptr + 1, res3, 1);
          }
        }
        input_row_ptr += 6;
        output_row_ptr += 3;
      }

      output_data_tmp[0] = input_const[0] * w11 + input_const[1] * w12 +
E
eclipsess 已提交
1811 1812
                           input_const[in_w] * w21 +
                           input_const[in_w + 1] * w22;
1813

E
eclipsess 已提交
1814
      out2in_mid = (out_w - 1) * 2;
E
eclipsess 已提交
1815
      output_data_tmp[out_w - 1] =
1816 1817 1818
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
          w20 * input_const[out2in_mid + in_w - 1] +
          w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1819 1820
          (1 - if_pad_r) * (w12 * input_const[out2in_mid + 1] +
                            w22 * input_const[out2in_mid + in_w + 1]);
1821

E
eclipsess 已提交
1822
      out2in_mid = (out_h - 1) * 2 * in_w;
1823

E
eclipsess 已提交
1824
      output_data_tmp[out_w * (out_h - 1)] =
1825 1826 1827
          w01 * input_const[out2in_mid - in_w] +
          w02 * input_const[out2in_mid - in_w + 1] +
          w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid + 1] +
E
eclipsess 已提交
1828 1829
          (1 - if_pad_b) * (w21 * input_const[out2in_mid + in_w] +
                            w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1830
      out2in_mid = (out_h - 1) * 2 * in_w + (out_w - 1) * 2;
1831

E
eclipsess 已提交
1832
      output_data_tmp[out_h * out_w - 1] =
1833 1834 1835
          w00 * input_const[out2in_mid - in_w - 1] +
          w01 * input_const[out2in_mid - in_w] +
          w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
E
eclipsess 已提交
1836 1837 1838 1839 1840 1841
          (1 - if_pad_r) * (w20 * input_const[out2in_mid + in_w - 1] +
                            w21 * input_const[out2in_mid + in_w]) +
          (1 - if_pad_b) * (w02 * input_const[out2in_mid - in_w + 1] +
                            w12 * input_const[out2in_mid + 1]) +
          (1 - if_pad_r) * (1 - if_pad_b) * w22 *
              input_const[out2in_mid + in_w + 1];
1842 1843
      output_data_tmp[0] =
          output_data_tmp[0] * newscale_data[j] + newbias_data[j];
E
eclipsess 已提交
1844 1845 1846 1847
      output_data_tmp[out_w - 1] =
          output_data_tmp[out_w - 1] * newscale_data[j] + newbias_data[j];
      output_data_tmp[out_w * (out_h - 1)] =
          output_data_tmp[out_w * (out_h - 1)] * newscale_data[j] +
1848
          newbias_data[j];
E
eclipsess 已提交
1849 1850
      output_data_tmp[out_h * out_w - 1] =
          output_data_tmp[out_h * out_w - 1] * newscale_data[j] +
1851 1852 1853
          newbias_data[j];
      if (if_relu) {
        output_data_tmp[0] = output_data_tmp[0] < 0 ? 0 : output_data_tmp[0];
E
eclipsess 已提交
1854 1855 1856 1857
        output_data_tmp[out_w - 1] =
            output_data_tmp[out_w - 1] < 0 ? 0 : output_data_tmp[out_w - 1];
        output_data_tmp[out_w * (out_h - 1)] =
            output_data_tmp[out_w * (out_h - 1)] < 0
1858
                ? 0
E
eclipsess 已提交
1859 1860 1861
                : output_data_tmp[out_w * (out_h - 1)];
        output_data_tmp[out_h * out_w - 1] =
            output_data_tmp[out_h * out_w - 1] < 0
1862
                ? 0
E
eclipsess 已提交
1863
                : output_data_tmp[out_h * out_w - 1];
1864 1865 1866
      }
      for (int i = 1; i < out_h - 1; i++) {
        out2in_mid = i * 2 * in_w;
E
eclipsess 已提交
1867
        output_data_tmp[i * out_w] = w01 * input_const[out2in_mid - in_w] +
1868 1869 1870 1871 1872
                                     w02 * input_const[out2in_mid - in_w + 1] +
                                     w11 * input_const[out2in_mid] +
                                     w12 * input_const[out2in_mid + 1] +
                                     w21 * input_const[out2in_mid + in_w] +
                                     w22 * input_const[out2in_mid + in_w + 1];
1873

E
eclipsess 已提交
1874
        out2in_mid = i * 2 * in_w + (out_w - 1) * 2;
E
eclipsess 已提交
1875
        output_data_tmp[i * out_w + out_w - 1] =
1876 1877 1878 1879 1880
            w00 * input_const[out2in_mid - in_w - 1] +
            w01 * input_const[out2in_mid - in_w] +
            w10 * input_const[out2in_mid - 1] + w11 * input_const[out2in_mid] +
            w20 * input_const[out2in_mid + in_w - 1] +
            w21 * input_const[out2in_mid + in_w] +
E
eclipsess 已提交
1881 1882 1883
            (1 - if_pad_r) * (w02 * input_const[out2in_mid - in_w + 1] +
                              w12 * input_const[out2in_mid + 1] +
                              w22 * input_const[out2in_mid + in_w + 1]);
E
eclipsess 已提交
1884 1885 1886 1887
        output_data_tmp[i * out_w] =
            output_data_tmp[i * out_w] * newscale_data[j] + newbias_data[j];
        output_data_tmp[i * out_w + out_w - 1] =
            output_data_tmp[i * out_w + out_w - 1] * newscale_data[j] +
1888 1889
            newbias_data[j];
        if (if_relu) {
E
eclipsess 已提交
1890 1891 1892 1893
          output_data_tmp[i * out_w] =
              output_data_tmp[i * out_w] < 0 ? 0 : output_data_tmp[i * out_w];
          output_data_tmp[i * out_w + out_w - 1] =
              output_data_tmp[i * out_w + out_w - 1] < 0
1894
                  ? 0
E
eclipsess 已提交
1895
                  : output_data_tmp[i * out_w + out_w - 1];
1896 1897 1898 1899 1900 1901
        }
      }
    }
    input_data += inhxw * c;
    output_data += outhxw * c;
  }
1902 1903 1904 1905
// #endif
#endif
}

H
hjchen2 已提交
1906 1907 1908 1909
void DepthwiseConv3x3s2p0(const framework::Tensor *input,
                          const framework::Tensor *filter,
                          framework::Tensor *output, framework::Tensor bias,
                          bool if_bias) {
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
#if __ARM_NEON

  const int batch_size = static_cast<int>(input->dims()[0]);
  const int input_channel = static_cast<int>(input->dims()[1]);

  const int input_height = static_cast<int>(input->dims()[2]);
  const int input_width = static_cast<int>(input->dims()[3]);
  const int output_height = static_cast<int>(output->dims()[2]);
  const int output_width = static_cast<int>(output->dims()[3]);
  const int inhxw = input_height * input_width;
  const int outhxw = output_height * output_width;

  float32x4_t zero = vdupq_n_f32(0.0);
  for (int b = 0; b < batch_size; b++) {
#pragma omp parallel for
    for (int c = 0; c < input_channel; c++) {
      const float *filter_data = filter->data<float>() + c * 9;
      const float *input_data = input->data<float>() + c * inhxw;
1928
      const float *bias_data = bias.data<float>() + c;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
      float *output_data = output->data<float>() + c * outhxw;
      float w00 = filter_data[0];
      float w01 = filter_data[1];
      float w02 = filter_data[2];
      float w10 = filter_data[3];
      float w11 = filter_data[4];
      float w12 = filter_data[5];
      float w20 = filter_data[6];
      float w21 = filter_data[7];
      float w22 = filter_data[8];
1939
      float32x4_t biasv = vld1q_dup_f32(bias_data);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
      for (int i = 0; i < output_height; i += 1) {
        for (int m = 0; m < output_width - 2; m += 3) {
          float *output_ptr = output_data + i * output_width + m;
          float32x4x2_t input_buff_top{}, input_buff_mid{}, input_buff_bottom{};
          float32x4_t in0, in1, in2, in3, in4, in5, tmp0, tmp1, tmp2, tmp3,
              tmp4, tmp5, out0;
          input_buff_top =
              vld2q_f32(input_data + (2 * i) * input_width + (2 * m));
          input_buff_mid =
              vld2q_f32(input_data + (2 * i + 1) * input_width + (2 * m));
          input_buff_bottom =
              vld2q_f32(input_data + (2 * i + 2) * input_width + (2 * m));

          in0 = input_buff_top.val[0];
          tmp0 = input_buff_top.val[1];
          tmp1 = vextq_f32(in0, zero, 1);

          in2 = input_buff_mid.val[0];
          tmp2 = input_buff_mid.val[1];
          tmp3 = vextq_f32(in2, zero, 1);

          in4 = input_buff_bottom.val[0];
          tmp4 = input_buff_bottom.val[1];
          tmp5 = vextq_f32(in4, zero, 1);

          out0 = vmulq_n_f32(in0, w00);
          out0 = vmlaq_n_f32(out0, tmp0, w01);
          out0 = vmlaq_n_f32(out0, tmp1, w02);
          out0 = vmlaq_n_f32(out0, in2, w10);
          out0 = vmlaq_n_f32(out0, tmp2, w11);
          out0 = vmlaq_n_f32(out0, tmp3, w12);
          out0 = vmlaq_n_f32(out0, in4, w20);
          out0 = vmlaq_n_f32(out0, tmp4, w21);
          out0 = vmlaq_n_f32(out0, tmp5, w22);
1974 1975 1976
          if (if_bias) {
            out0 = vaddq_f32(out0, biasv);
          }
1977 1978 1979 1980 1981 1982 1983 1984 1985
          vst1q_lane_f32(output_ptr, out0, 0);
          vst1q_lane_f32(output_ptr + 1, out0, 1);
          vst1q_lane_f32(output_ptr + 2, out0, 2);
        }
        int m;
        for (m = 0; m < output_width - 2; m += 3) {
        }
        for (int j = m; j < output_width; j++) {
          output_data[i * output_width + j] =
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
              input_data[(2 * i) * input_width + 2 * j] * w00 +
              input_data[(2 * i) * input_width + 2 * j + 1] * w01 +
              input_data[(2 * i) * input_width + 2 * j + 2] * w02 +
              input_data[(2 * i + 1) * input_width + 2 * j] * w10 +
              input_data[(2 * i + 1) * input_width + 2 * j + 1] * w11 +
              input_data[(2 * i + 1) * input_width + 2 * j + 2] * w12 +
              input_data[(2 * i + 2) * input_width + 2 * j] * w20 +
              input_data[(2 * i + 2) * input_width + 2 * j + 1] * w21 +
              input_data[(2 * i + 2) * input_width + 2 * j + 2] * w22;
          if (if_bias) {
            output_data[i * output_width + j] += *bias_data;
          }
1998 1999 2000 2001 2002
        }
      }
    }
  }

L
liuruilong 已提交
2003
#endif
E
eclipsess 已提交
2004 2005
}

W
wangliu 已提交
2006 2007 2008
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile