io_copy_compute.cc 10.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_place.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/target_wrapper.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void CopyFromHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::HtoD);
}

void CopyToHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::DtoH);
}

/*
 * This kernel copies a tensor from host to FPGA space.
 */
class IoCopyHostToFpgaCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
48
    param.y->mutable_data<float16>();
C
chonwhite 已提交
49 50
    if (param.x->ZynqTensor()->aligned() &&
        param.x->ZynqTensor()->shape().shouldAlign()) {
51
      zynqmp::Tensor tempTensor;
C
chonwhite 已提交
52 53
      tempTensor.mutableData<float16>(zynqmp::FP16,
                                      param.x->ZynqTensor()->shape());
54 55 56 57 58 59 60 61 62 63 64
      tempTensor.copyFrom(param.x->ZynqTensor());
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      param.y->ZynqTensor()->copyFrom(&tempTensor);
    } else {
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }
    param.y->ZynqTensor()->invalidate();
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
Y
Yan Chunwei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  }

  std::unique_ptr<type_infer_handler_t> GetTypeInferHandler() override {
    std::unique_ptr<type_infer_handler_t> res(new type_infer_handler_t);
    *res = [](const std::map<std::string, const Type*>& inputs,
              const std::string& out) -> const Type* {
      CHECK(!inputs.empty());
      auto* type = inputs.at("Input");
      CHECK(type->target() == TARGET(kHost));

      auto out_place = type->place();
      out_place.target = TARGET(kFPGA);
      auto* out_type = Type::Get(type->id(),
                                 out_place.target,
                                 out_place.precision,
                                 out_place.layout,
                                 out_place.device);
      return out_type;
    };
    return res;
  }

  std::string doc() const override { return "Copy IO from HOST to FPGA"; }
};

/*
 * This kernel copies a tensor from FPGA to host space.
 */
class IoCopyFpgaToHostCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
100 101 102 103 104

    param.y->mutable_data<float>();
    param.y->ZynqTensor()->setDataType(zynqmp::FP32);
    param.x->ZynqTensor()->syncToDevice();

C
chonwhite 已提交
105 106
    if (param.x->ZynqTensor()->aligned() &&
        param.x->ZynqTensor()->shape().shouldAlign()) {
107
      zynqmp::Tensor tempTensor;
C
chonwhite 已提交
108 109
      tempTensor.mutableData<float16>(zynqmp::FP16,
                                      param.x->ZynqTensor()->shape());
110 111 112 113 114 115 116 117 118 119 120
      tempTensor.copyFrom(param.x->ZynqTensor());
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      param.y->ZynqTensor()->copyFrom(&tempTensor);
    } else {
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    param.y->ZynqTensor()->flush();
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
C
chonwhite 已提交
121 122 123

    // param.x->ZynqTensor()->saveToFile("io_x", true);
    // param.y->ZynqTensor()->saveToFile("io_y", true);
Y
Yan Chunwei 已提交
124
  }
C
chonwhite 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  std::string doc() const override { return "Copy IO from FPGA to HOST"; }
};

void hwc_to_chw(float* chw_data,
                float* hwc_data,
                int num,
                int channel,
                int height,
                int width) {
  int chw = channel * height * width;
  int wc = width * channel;
  int wh = width * height;
  int index = 0;
  for (int n = 0; n < num; n++) {
    for (int h = 0; h < height; h++) {
      for (int w = 0; w < width; w++) {
        for (int c = 0; c < channel; c++) {
          chw_data[n * chw + c * wh + h * width + w] = hwc_data[index];
          index++;
        }
      }
    }
  }
}

class IoCopyFpgaToHostCHWCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));

    Tensor hwc;
    hwc.Resize(param.y->dims());
    float* hwc_data = hwc.mutable_data<float>();

    float* chw_data = param.y->mutable_data<float>();
    param.y->ZynqTensor()->setDataType(zynqmp::FP32);
    param.x->ZynqTensor()->syncToDevice();

    if (param.x->ZynqTensor()->aligned() &&
        param.x->ZynqTensor()->shape().shouldAlign()) {
      zynqmp::Tensor tempTensor;
      tempTensor.mutableData<float16>(zynqmp::FP16,
                                      param.x->ZynqTensor()->shape());
      tempTensor.copyFrom(param.x->ZynqTensor());
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      hwc.ZynqTensor()->copyFrom(&tempTensor);
    } else {
      hwc.ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }

    int num = 1;
    int channel = 1;
    int height = 1;
    int width = 1;

    auto dims = param.y->ZynqTensor()->shape();
Y
Yan Chunwei 已提交
185

C
chonwhite 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199
    hwc_to_chw(chw_data,
               hwc_data,
               dims.num(),
               dims.channel(),
               dims.height(),
               dims.width());

    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    param.y->ZynqTensor()->flush();
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
    // param.x->ZynqTensor()->saveToFile("io_x", true);
    // param.y->ZynqTensor()->saveToFile("io_y", true);
  }
Y
Yan Chunwei 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
  std::string doc() const override { return "Copy IO from FPGA to HOST"; }
};

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
216 217
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
218 219
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
220 221
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
222 223
    .Finalize();

C
chonwhite 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device_any_any)
    .BindInput("Input",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

Y
Yan Chunwei 已提交
239 240 241 242 243 244 245 246
REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
247 248
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
Y
Yan Chunwei 已提交
249
    .BindOutput("Out",
C
chonwhite 已提交
250
                {LiteType::GetTensorTy(TARGET(kHost),
251
                                       PRECISION(kFloat),
252
                                       DATALAYOUT(kNHWC))})
Y
Yan Chunwei 已提交
253 254
    .Finalize();

C
chonwhite 已提交
255 256 257 258
REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
C
chonwhite 已提交
259
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCHWCompute,
C
chonwhite 已提交
260 261 262 263 264 265 266 267 268 269 270
                     device_to_host_22)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kARM),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

Y
Yan Chunwei 已提交
271 272 273 274 275 276 277 278
REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
279 280
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
281 282
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
283 284
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
285 286 287 288 289 290 291 292 293 294
    .Finalize();

REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
295 296
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
297 298 299 300 301
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kHost),
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
    .Finalize();