io_copy_compute.cc 7.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_place.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/target_wrapper.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void CopyFromHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::HtoD);
}

void CopyToHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::DtoH);
}

/*
 * This kernel copies a tensor from host to FPGA space.
 */
class IoCopyHostToFpgaCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    // param.y->CopyDataFrom(*param.x);
    param.y->mutable_data<float16>();
    if (param.x->ZynqTensor()->aligned() && param.x->ZynqTensor()->shape().shouldAlign()) {
      zynqmp::Tensor tempTensor;
      tempTensor.mutableData<float16>(zynqmp::FP16, param.x->ZynqTensor()->shape());
      tempTensor.copyFrom(param.x->ZynqTensor());
      // tempTensor.saveToFile("tempTensor", true);
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      // tempTensor.saveToFile("unaligned", true);
      param.y->ZynqTensor()->copyFrom(&tempTensor);
    } else {
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }
    param.y->ZynqTensor()->invalidate();
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
    
Y
Yan Chunwei 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  }

  std::unique_ptr<type_infer_handler_t> GetTypeInferHandler() override {
    std::unique_ptr<type_infer_handler_t> res(new type_infer_handler_t);
    *res = [](const std::map<std::string, const Type*>& inputs,
              const std::string& out) -> const Type* {
      CHECK(!inputs.empty());
      auto* type = inputs.at("Input");
      CHECK(type->target() == TARGET(kHost));

      auto out_place = type->place();
      out_place.target = TARGET(kFPGA);
      auto* out_type = Type::Get(type->id(),
                                 out_place.target,
                                 out_place.precision,
                                 out_place.layout,
                                 out_place.device);
      return out_type;
    };
    return res;
  }

  std::string doc() const override { return "Copy IO from HOST to FPGA"; }
};

/*
 * This kernel copies a tensor from FPGA to host space.
 */
class IoCopyFpgaToHostCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
99
    // std::cout << "IoCopyFpgaToHostCompute \n";
Y
Yan Chunwei 已提交
100 101 102
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    // std::cout << "before CopyDataFrom \n";

    param.y->mutable_data<float>();
    param.y->ZynqTensor()->setDataType(zynqmp::FP32);
    param.x->ZynqTensor()->syncToDevice();

    if (param.x->ZynqTensor()->aligned() && param.x->ZynqTensor()->shape().shouldAlign()) {
      zynqmp::Tensor tempTensor;
      tempTensor.mutableData<float16>(zynqmp::FP16, param.x->ZynqTensor()->shape());
      tempTensor.copyFrom(param.x->ZynqTensor());
      // tempTensor.saveToFile("tempTensor", true);
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      // tempTensor.saveToFile("unaligned", true);
      param.y->ZynqTensor()->copyFrom(&tempTensor);
    } else {
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    param.y->ZynqTensor()->flush();
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
Y
Yan Chunwei 已提交
125 126
  }

127

Y
Yan Chunwei 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  std::string doc() const override { return "Copy IO from FPGA to HOST"; }
};

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
144 145
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
146 147
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
148 149
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
150 151 152 153 154 155 156 157 158 159
    .Finalize();

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
160 161
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
Y
Yan Chunwei 已提交
162
    .BindOutput("Out",
163
                {LiteType::GetTensorTy(TARGET(kARM),
164
                                       PRECISION(kFloat),
165
                                       DATALAYOUT(kNHWC))})
Y
Yan Chunwei 已提交
166 167 168 169 170 171 172 173 174 175
    .Finalize();

REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
176 177
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
178 179
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
180 181
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189 190 191
    .Finalize();

REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
192 193
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
194 195 196 197 198
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kHost),
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
    .Finalize();