io_copy_compute.cc 8.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_place.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/target_wrapper.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void CopyFromHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::HtoD);
}

void CopyToHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::DtoH);
}

/*
 * This kernel copies a tensor from host to FPGA space.
 */
class IoCopyHostToFpgaCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
48
    param.y->mutable_data<float16>();
C
chonwhite 已提交
49 50
    if (param.x->ZynqTensor()->aligned() &&
        param.x->ZynqTensor()->shape().shouldAlign()) {
51
      zynqmp::Tensor tempTensor;
C
chonwhite 已提交
52 53
      tempTensor.mutableData<float16>(zynqmp::FP16,
                                      param.x->ZynqTensor()->shape());
54 55 56 57 58 59 60 61 62 63 64
      tempTensor.copyFrom(param.x->ZynqTensor());
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      param.y->ZynqTensor()->copyFrom(&tempTensor);
    } else {
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }
    param.y->ZynqTensor()->invalidate();
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
Y
Yan Chunwei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  }

  std::unique_ptr<type_infer_handler_t> GetTypeInferHandler() override {
    std::unique_ptr<type_infer_handler_t> res(new type_infer_handler_t);
    *res = [](const std::map<std::string, const Type*>& inputs,
              const std::string& out) -> const Type* {
      CHECK(!inputs.empty());
      auto* type = inputs.at("Input");
      CHECK(type->target() == TARGET(kHost));

      auto out_place = type->place();
      out_place.target = TARGET(kFPGA);
      auto* out_type = Type::Get(type->id(),
                                 out_place.target,
                                 out_place.precision,
                                 out_place.layout,
                                 out_place.device);
      return out_type;
    };
    return res;
  }

  std::string doc() const override { return "Copy IO from HOST to FPGA"; }
};

/*
 * This kernel copies a tensor from FPGA to host space.
 */
class IoCopyFpgaToHostCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
100 101 102 103 104

    param.y->mutable_data<float>();
    param.y->ZynqTensor()->setDataType(zynqmp::FP32);
    param.x->ZynqTensor()->syncToDevice();

C
chonwhite 已提交
105 106
    if (param.x->ZynqTensor()->aligned() &&
        param.x->ZynqTensor()->shape().shouldAlign()) {
107
      zynqmp::Tensor tempTensor;
C
chonwhite 已提交
108 109
      tempTensor.mutableData<float16>(zynqmp::FP16,
                                      param.x->ZynqTensor()->shape());
110 111 112 113 114 115 116 117 118 119 120
      tempTensor.copyFrom(param.x->ZynqTensor());
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      param.y->ZynqTensor()->copyFrom(&tempTensor);
    } else {
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    param.y->ZynqTensor()->flush();
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
C
chonwhite 已提交
121 122 123

    // param.x->ZynqTensor()->saveToFile("io_x", true);
    // param.y->ZynqTensor()->saveToFile("io_y", true);
Y
Yan Chunwei 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  }

  std::string doc() const override { return "Copy IO from FPGA to HOST"; }
};

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
142 143
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
144 145
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
146 147
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
148 149
    .Finalize();

C
chonwhite 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device_any_any)
    .BindInput("Input",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

Y
Yan Chunwei 已提交
165 166 167 168 169 170 171 172
REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
173 174
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
Y
Yan Chunwei 已提交
175
    .BindOutput("Out",
176
                {LiteType::GetTensorTy(TARGET(kARM),
177
                                       PRECISION(kFloat),
178
                                       DATALAYOUT(kNHWC))})
Y
Yan Chunwei 已提交
179 180
    .Finalize();

C
chonwhite 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host_22)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kARM),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

Y
Yan Chunwei 已提交
197 198 199 200 201 202 203 204
REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
205 206
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
207 208
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
209 210
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
211 212 213 214 215 216 217 218 219 220
    .Finalize();

REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
221 222
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
223 224 225 226 227
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kHost),
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
    .Finalize();