transpose_compute.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <vector>

#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/core/type_system.h"
#include "lite/kernels/fpga/transpose_compute.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

C
chonwhite 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
void transposeCompute(operators::TransposeParam param) {
  // copy from;
  const auto* input_x = param.x;
  const auto input_x_dims = input_x->dims();
  input_x->ZynqTensor()->invalidate();
  input_x->ZynqTensor()->unalignImage();

  Tensor float_input;
  float_input.Resize(input_x_dims);
  float_input.mutable_data<float>();
  float_input.ZynqTensor()->copyFrom(input_x->ZynqTensor());

  // const auto* input_x_data = input_x->data<float>();
  const auto* input_x_data = float_input.data<float>();

  // auto& param = this->Param<param_t>();

  auto* out = param.output;
  const auto axis = param.axis;

  auto* out_data = out->mutable_data<float>();

  size_t ndim = axis.size();
  std::vector<int> xdim(ndim);
  std::vector<int> xstride(ndim);
  std::vector<int> xout(ndim);
  for (int i = 0; i < ndim; i++) {
    int j = ndim - 1 - i;
    xdim[j] = input_x_dims[axis[i]];
    xstride[j] = 1;
    for (int k = axis[i] + 1; k < ndim; k++) {
      xstride[j] *= input_x_dims[k];
    }
    xout[j] = xstride[j] * xdim[j];
  }

  auto numel = input_x->numel();
  size_t pind = 0;
  std::vector<int> ind(ndim);
  for (int i = 0; i < numel; i++) {
    out_data[i] = input_x_data[pind];
    ind[0]++;
    pind += xstride[0];
    for (int j = 0; j < ndim - 1; j++) {
      if (ind[j] == xdim[j]) {
        ind[j + 1]++;
        ind[j] = 0;
        pind += xstride[j + 1];
        pind -= xout[j];
      } else {
        break;
      }
    }
  }
}

86 87 88
// Transpose
void TransposeCompute::Run() {
  auto& param = this->Param<param_t>();
C
chonwhite 已提交
89
  // param.output->mutable_data<float16>();
90 91 92 93 94 95
}

// Transpose2
void Transpose2Compute::Run() {
  auto& param = this->Param<param_t>();
  param.output->mutable_data<float>();
C
chonwhite 已提交
96
  param.x->ZynqTensor()->invalidate();
97 98
  param.x->ZynqTensor()->unalignImage();
  if (param.x->dims().size() != 4) {
C
chonwhite 已提交
99
    transposeCompute(param);
100 101 102 103 104 105 106 107 108 109 110 111 112
    // auto out = param.Out();
    // auto out_data = out->data<half>();

    //   int num = input_x_dims[1];
    // int channel = input_x_dims[2];

    // int index = 0;
    // for (int n = 0; n < num; n++) {
    //   for (int c = 0; c < channel; c++) {
    //     out_data[c * num + n] = input_x_data[n * channel + c];
    //     index++;
    //   }
    // }
C
chonwhite 已提交
113 114

    // param.output->ZynqTensor()->copyFrom(param.x->ZynqTensor());
115
  } else {
C
chonwhite 已提交
116
    param.x->ZynqTensor()->saveToFile("tx", true);
117
    param.output->ZynqTensor()->copyFrom(param.x->ZynqTensor());
C
chonwhite 已提交
118
    param.output->ZynqTensor()->saveToFile("to", true);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  }
}

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

// Transpose
REGISTER_LITE_KERNEL(transpose,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::TransposeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

// Transpose2
REGISTER_LITE_KERNEL(transpose2,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::Transpose2Compute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
C
chonwhite 已提交
155 156
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("XShape", {LiteType::GetTensorTy(TARGET(kARM))})
157
    .Finalize();