transpose_compute.cc 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <vector>

#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/core/type_system.h"
#include "lite/kernels/fpga/transpose_compute.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;


// Transpose
void TransposeCompute::Run() {
  auto& param = this->Param<param_t>();
  param.output->mutable_data<float16>();
}

// Transpose2
void Transpose2Compute::Run() {
  auto& param = this->Param<param_t>();
  param.output->mutable_data<float>();

  param.x->ZynqTensor()->unalignImage();
  if (param.x->dims().size() != 4) {
    // TransposeCompute<float>(param);
    // auto out = param.Out();
    // auto out_data = out->data<half>();


    //   int num = input_x_dims[1];
    // int channel = input_x_dims[2];

    // // DLOG << "num::" << num << "  channel::" << channel;

    // int index = 0;
    // for (int n = 0; n < num; n++) {
    //   for (int c = 0; c < channel; c++) {
    //     out_data[c * num + n] = input_x_data[n * channel + c];
    //     index++;
    //   }
    // }
    
  } else {
    param.output->ZynqTensor()->copyFrom(param.x->ZynqTensor());
  }
}

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

// Transpose
REGISTER_LITE_KERNEL(transpose,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::TransposeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

// Transpose2
REGISTER_LITE_KERNEL(transpose2,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::Transpose2Compute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("XShape",
                {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();