transpose_compute.cc 2.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <vector>

#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/core/type_system.h"
#include "lite/kernels/fpga/transpose_compute.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

// Transpose
void TransposeCompute::Run() {
  auto& param = this->Param<param_t>();
  param.output->mutable_data<float16>();
}

// Transpose2
void Transpose2Compute::Run() {
  auto& param = this->Param<param_t>();
  param.output->mutable_data<float>();

  param.x->ZynqTensor()->unalignImage();
  if (param.x->dims().size() != 4) {
    // TransposeCompute<float>(param);
    // auto out = param.Out();
    // auto out_data = out->data<half>();

    //   int num = input_x_dims[1];
    // int channel = input_x_dims[2];

    // int index = 0;
    // for (int n = 0; n < num; n++) {
    //   for (int c = 0; c < channel; c++) {
    //     out_data[c * num + n] = input_x_data[n * channel + c];
    //     index++;
    //   }
    // }
C
chonwhite 已提交
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  } else {
    param.output->ZynqTensor()->copyFrom(param.x->ZynqTensor());
  }
}

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

// Transpose
REGISTER_LITE_KERNEL(transpose,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::TransposeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

// Transpose2
REGISTER_LITE_KERNEL(transpose2,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::Transpose2Compute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
C
chonwhite 已提交
96 97
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("XShape", {LiteType::GetTensorTy(TARGET(kARM))})
98
    .Finalize();