instance_norm_image_compute.cc 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class InstanceNormImageCompute : public KernelLite<TARGET(kOpenCL),
                                                   PRECISION(kFP16),
                                                   DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::InstanceNormParam;

  std::string doc() const override {
    return "InstanceNorm using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#if 1  // onnx/pytorch version
  void PrepareForRun() override {
    instance_norm_param_ = param_.get_mutable<param_t>();
    auto out = instance_norm_param_->out;
    auto out_dims = out->dims();
    const int out_n = out_dims[0];
    const int out_c = out_dims[1];
    const int out_h = out_dims[2];
    const int out_w = out_dims[3];
    const int c_group = (out_dims[1] + 3) / 4;

    // TODO(ysh329): add instance_norm + relu pass
    // std::string build_options_ += "-DRELU";
    if (out_h == 128) {
      build_options_ += " -DLOCAL_MEM_128";
    } else if (out_h == 64) {
      build_options_ += " -DLOCAL_MEM_64";
    } else if (out_h > 256) {
      LOG(FATAL) << "Unsupported input height:" << out_h << " of instance norm";
    }

    auto& context = ctx_->As<OpenCLContext>();
63 64 65 66
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/instance_norm_kernel.cl",
                                    build_options_,
                                    time_stamp_);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = instance_norm_param_->x;
    auto* out = instance_norm_param_->out;
    auto x_dims = x->dims();
    auto out_dims = out->dims();

    const int out_n = out_dims[0];
    const int out_c_group = (out_dims[1] + 3) / 4;
    const int out_h = out_dims[2];
    const int out_w = out_dims[3];

    float epsilon = instance_norm_param_->epsilon;
    auto device_info = CLRuntime::Global()->GetDeviceInfo();
    int max_work_item_size1 = device_info["CL_DEVICE_MAX_WORK_ITEM_SIZES_1"];
    int lws0 = 1;
    int lws1 =
        std::min(static_cast<int>(max_work_item_size1), std::min(256, out_w));
    int lws2 = 1;
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(out_n * out_c_group),
                    static_cast<cl::size_type>(lws1),
                    static_cast<cl::size_type>(lws2)};
    auto local_work_size = cl::NDRange{static_cast<cl::size_type>(lws0),
                                       static_cast<cl::size_type>(lws1),
                                       static_cast<cl::size_type>(lws2)};

99
#ifdef LITE_WITH_LOG
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    VLOG(4) << "global_work_size:" << static_cast<int>(global_work_size[0])
            << " " << static_cast<int>(global_work_size[1]) << " "
            << static_cast<int>(global_work_size[2]);
    VLOG(4) << "local_work_size:" << static_cast<int>(local_work_size[0]) << " "
            << static_cast<int>(local_work_size[1]) << " "
            << static_cast<int>(local_work_size[2]);
    VLOG(4) << "out_w:" << out_w;
    VLOG(4) << "out_h:" << out_h;
    VLOG(4) << "out_c_group:" << out_c_group;
    VLOG(4) << "lws1:" << lws1;
    VLOG(4) << "lws2:" << lws2;
    VLOG(4) << "epsilon:" << epsilon;
#endif

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

    STL::stringstream kernel_key;
120
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status = kernel.setArg(0, out_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(1, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(2, out_c_group);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(3, lws1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(4, lws2);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(5, epsilon);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(6, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(7, *out_img);
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        local_work_size,
        nullptr,
X
xiebaiyuan 已提交
146
        nullptr);
147 148 149 150
    CL_CHECK_FATAL(status);
  }

#else  // paddle version
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  void PrepareForRun() override {
    instance_norm_param_ = param_.get_mutable<param_t>();
    auto channel = instance_norm_param_->scale->dims()[0];
    auto batch = instance_norm_param_->x->dims()[0];
    int64_t cgroup = (channel + 3) / 4;
    int64_t cround = cgroup * 4;
    std::vector<half_t> scale_img(cround * batch);
    std::vector<half_t> bias_img(cround * batch);
    const float* scale_data = instance_norm_param_->scale->data<float>();
    const float* bias_data = instance_norm_param_->bias->data<float>();
    //! init scale_img bias_img data
    for (int i = 0; i < channel; ++i) {
      scale_img[i] = Float2Half(scale_data[i]);
      bias_img[i] = Float2Half(bias_data[i]);
    }
    for (int i = channel; i < cround; ++i) {
      scale_img[i] = Float2Half(0.f);
      bias_img[i] = Float2Half(0.f);
    }
    for (int i = 1; i < batch; ++i) {
      memcpy(scale_img.data() + i * cround,
             scale_img.data(),
             cround * sizeof(half_t));
      memcpy(bias_img.data() + i * cround,
             bias_img.data(),
             cround * sizeof(half_t));
    }
    DDim scale_img_size{{cgroup, batch}};
    scale_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], scale_img.data());
    bias_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], bias_img.data());
    auto& context = ctx_->As<OpenCLContext>();
184 185 186 187
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/instance_norm_kernel.cl",
                                    build_options_,
                                    time_stamp_);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x = instance_norm_param_->x;
    auto* out = instance_norm_param_->out;
    auto in_dims = x->dims();

    int batch = in_dims[0];
    int channel = in_dims[1];
    int in_h = in_dims[2];
    int in_w = in_dims[3];

203
#ifdef LITE_WITH_LOG
204 205 206
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
207
#endif
208 209 210 211 212

    auto out_image_shape = InitImageDimInfoWith(in_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);
213

214
#ifdef LITE_WITH_LOG
215 216 217 218
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
219
#endif
220 221 222 223 224 225 226 227 228 229 230

    int threads = 512;
    int group_size_x = (channel + 3) / 4;
    int group_size_y = batch;
    auto local_work_size = cl::NDRange{static_cast<cl::size_type>(threads),
                                       static_cast<cl::size_type>(1),
                                       static_cast<cl::size_type>(1)};
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(group_size_x * threads),
                    static_cast<cl::size_type>(group_size_y),
                    static_cast<cl::size_type>(1)};
231

232
#ifdef LITE_WITH_LOG
233 234 235 236
    VLOG(4) << "local_work_size:[2D]:" << local_work_size[0] << " "
            << local_work_size[1] << " " << local_work_size[2];
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
237
#endif
238 239

    STL::stringstream kernel_key;
240
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    auto* scale_img = scale_image_.data<half_t, cl::Image2D>();
    auto* bias_img = bias_image_.data<half_t, cl::Image2D>();
    float epsilon = instance_norm_param_->epsilon;

    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *scale_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *bias_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, epsilon);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        local_work_size,
        nullptr,
X
xiebaiyuan 已提交
267
        nullptr);
268 269
    CL_CHECK_FATAL(status);
  }
270
#endif
271 272 273

 protected:
  param_t* instance_norm_param_{nullptr};
274
  std::string kernel_func_name_{"instance_norm_onnx"};
275
  std::string build_options_{"-DCL_DTYPE_half"};
276
  std::string time_stamp_{GetTimeStamp()};
X
xiebaiyuan 已提交
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  Tensor scale_image_;
  Tensor bias_image_;
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(instance_norm,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::InstanceNormImageCompute,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Y",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .BindInput("Scale", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedMean", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedVariance", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();