Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
604c5d4f
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
604c5d4f
编写于
3月 09, 2020
作者:
Y
yiicy
提交者:
GitHub
3月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[OPENCL] add instance norm kernel and ut, test=develop (#3122)
add instance norm kernel and ut
上级
1bd34c3f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
511 addition
and
1 deletion
+511
-1
lite/backends/opencl/cl_kernel/image/instance_norm_kernel.cl
lite/backends/opencl/cl_kernel/image/instance_norm_kernel.cl
+79
-0
lite/kernels/opencl/CMakeLists.txt
lite/kernels/opencl/CMakeLists.txt
+4
-1
lite/kernels/opencl/instance_norm_image_compute.cc
lite/kernels/opencl/instance_norm_image_compute.cc
+188
-0
lite/kernels/opencl/instance_norm_image_compute_test.cc
lite/kernels/opencl/instance_norm_image_compute_test.cc
+240
-0
未找到文件。
lite/backends/opencl/cl_kernel/image/instance_norm_kernel.cl
0 → 100644
浏览文件 @
604c5d4f
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
<cl_common.h>
__kernel
void
instance_norm
(
__read_only
image2d_t
input,
__write_only
image2d_t
output,
__read_only
image2d_t
scale,
__read_only
image2d_t
bias,
const
float
epsilon,
const
int
in_h,
const
int
in_w
)
{
__local
CL_DTYPE4
saved_mean[1024]
;
__local
CL_DTYPE4
saved_variance[1024]
;
const
int
lid
=
get_local_id
(
0
)
;
const
int
lsize
=
get_local_size
(
0
)
;
const
int
gidx
=
get_group_id
(
0
)
;
const
int
gidy
=
get_group_id
(
1
)
;
const
int
spatial_size
=
in_h
*
in_w
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
CL_DTYPE4
mean
=
(
CL_DTYPE4
)(
0.f,
0.f,
0.f,
0.f
)
;
CL_DTYPE4
variance
=
(
CL_DTYPE4
)(
0.f,
0.f,
0.f,
0.f
)
;
CL_DTYPE4
vepsilon
=
(
CL_DTYPE4
)(
epsilon,
epsilon,
epsilon,
epsilon
)
;
const
int
x_offset
=
gidx
*
in_w
;
const
int
y_offset
=
gidy
*
in_h
;
int2
coor
;
for
(
int
i
=
lid
; i < spatial_size; i += lsize) {
coor.x
=
i
%
in_w
+
x_offset
;
coor.y
=
i
/
in_w
+
y_offset
;
CL_DTYPE4
pixel
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
coor
)
;
mean
+=
pixel
;
variance
+=
pixel
*
pixel
;
}
saved_mean[lid]
=
mean
;
saved_variance[lid]
=
variance
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//!
do
reduction
int
dynamic_size
=
lsize
>>
1
;
for
(
; dynamic_size > 0; dynamic_size >>= 1){
if
(
lid
<
dynamic_size
)
{
saved_mean[lid]
+=
saved_mean[lid
+
dynamic_size]
;
saved_variance[lid]
+=
saved_variance[lid
+
dynamic_size]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
mean
=
saved_mean[0]
/
spatial_size
;
variance
=
saved_variance[0]
/
spatial_size
-
mean
*
mean
;
variance
=
rsqrt
(
variance
+
vepsilon
)
;
//!
do
instance
norm
coor.x
=
gidx
;
coor.y
=
gidy
;
CL_DTYPE4
vscale
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
scale,
sampler,
coor
)
;
vscale
*=
variance
;
CL_DTYPE4
vbias
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
bias,
sampler,
coor
)
;
for
(
int
i
=
lid
; i < spatial_size; i += lsize) {
coor.x
=
i
%
in_w
+
x_offset
;
coor.y
=
i
/
in_w
+
y_offset
;
CL_DTYPE4
pixel
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
coor
)
;
pixel
=
(
pixel
-
mean
)
*
vscale
+
vbias
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output,
coor,
pixel
)
;
}
}
lite/kernels/opencl/CMakeLists.txt
浏览文件 @
604c5d4f
...
...
@@ -29,6 +29,7 @@ add_kernel(scale_opencl OPENCL basic SRCS scale_image_compute.cc DEPS ${cl_kerne
add_kernel
(
grid_sampler_opencl OPENCL basic SRCS grid_sampler_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
lrn_opencl OPENCL basic SRCS lrn_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
bilinear_interp_opencl OPENCL basic SRCS bilinear_interp_image_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
instance_norm_opencl OPENCL basic SRCS instance_norm_image_compute.cc DEPS
${
cl_kernel_deps
}
)
# extra
# wait to add ...
...
...
@@ -84,7 +85,9 @@ lite_cc_test(test_lrn_image_opencl SRCS lrn_image_compute_test.cc
lite_cc_test
(
test_bilinear_interp_image_opencl SRCS bilinear_interp_image_compute_test.cc
DEPS bilinear_interp_opencl op_registry program context
)
lite_cc_test
(
test_instance_norm_image_opencl SRCS instance_norm_image_compute_test.cc
DEPS instance_norm_opencl op_registry program context
)
######################
# buffer kernel #
######################
...
...
lite/kernels/opencl/instance_norm_image_compute.cc
0 → 100644
浏览文件 @
604c5d4f
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
class
InstanceNormImageCompute
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
)
>
{
public:
using
param_t
=
operators
::
InstanceNormParam
;
std
::
string
doc
()
const
override
{
return
"InstanceNorm using cl::Image2D(ImageDefault/RGBA), kFP16"
;
}
void
PrepareForRun
()
override
{
instance_norm_param_
=
param_
.
get_mutable
<
param_t
>
();
auto
channel
=
instance_norm_param_
->
scale
->
dims
()[
0
];
auto
batch
=
instance_norm_param_
->
x
->
dims
()[
0
];
int64_t
cgroup
=
(
channel
+
3
)
/
4
;
int64_t
cround
=
cgroup
*
4
;
std
::
vector
<
half_t
>
scale_img
(
cround
*
batch
);
std
::
vector
<
half_t
>
bias_img
(
cround
*
batch
);
const
float
*
scale_data
=
instance_norm_param_
->
scale
->
data
<
float
>
();
const
float
*
bias_data
=
instance_norm_param_
->
bias
->
data
<
float
>
();
//! init scale_img bias_img data
for
(
int
i
=
0
;
i
<
channel
;
++
i
)
{
scale_img
[
i
]
=
Float2Half
(
scale_data
[
i
]);
bias_img
[
i
]
=
Float2Half
(
bias_data
[
i
]);
}
for
(
int
i
=
channel
;
i
<
cround
;
++
i
)
{
scale_img
[
i
]
=
Float2Half
(
0.
f
);
bias_img
[
i
]
=
Float2Half
(
0.
f
);
}
for
(
int
i
=
1
;
i
<
batch
;
++
i
)
{
memcpy
(
scale_img
.
data
()
+
i
*
cround
,
scale_img
.
data
(),
cround
*
sizeof
(
half_t
));
memcpy
(
bias_img
.
data
()
+
i
*
cround
,
bias_img
.
data
(),
cround
*
sizeof
(
half_t
));
}
DDim
scale_img_size
{{
cgroup
,
batch
}};
scale_image_
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
scale_img_size
[
0
],
scale_img_size
[
1
],
scale_img
.
data
());
bias_image_
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
scale_img_size
[
0
],
scale_img_size
[
1
],
bias_img
.
data
());
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"image/instance_norm_kernel.cl"
,
build_options_
);
VLOG
(
1
)
<<
"kernel_func_name_:"
<<
kernel_func_name_
;
}
void
Run
()
override
{
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
auto
*
x
=
instance_norm_param_
->
x
;
auto
*
out
=
instance_norm_param_
->
out
;
auto
in_dims
=
x
->
dims
();
int
batch
=
in_dims
[
0
];
int
channel
=
in_dims
[
1
];
int
in_h
=
in_dims
[
2
];
int
in_w
=
in_dims
[
3
];
VLOG
(
4
)
<<
"x->target():"
<<
TargetToStr
(
x
->
target
());
VLOG
(
4
)
<<
"out->target():"
<<
TargetToStr
(
out
->
target
());
VLOG
(
4
)
<<
"x->dims():"
<<
in_dims
;
auto
out_image_shape
=
InitImageDimInfoWith
(
in_dims
);
auto
*
x_img
=
x
->
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
out_img
=
out
->
mutable_data
<
half_t
,
cl
::
Image2D
>
(
out_image_shape
[
"width"
],
out_image_shape
[
"height"
]);
VLOG
(
4
)
<<
"out_image_shape[w,h]: "
<<
out_image_shape
[
"width"
]
<<
" "
<<
out_image_shape
[
"height"
];
VLOG
(
4
)
<<
"in_h: "
<<
in_h
<<
", in_w: "
<<
in_w
;
int
threads
=
512
;
int
group_size_x
=
(
channel
+
3
)
/
4
;
int
group_size_y
=
batch
;
auto
local_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
threads
),
static_cast
<
cl
::
size_type
>
(
1
),
static_cast
<
cl
::
size_type
>
(
1
)};
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
group_size_x
*
threads
),
static_cast
<
cl
::
size_type
>
(
group_size_y
),
static_cast
<
cl
::
size_type
>
(
1
)};
VLOG
(
4
)
<<
"local_work_size:[2D]:"
<<
local_work_size
[
0
]
<<
" "
<<
local_work_size
[
1
]
<<
" "
<<
local_work_size
[
2
];
VLOG
(
4
)
<<
"global_work_size:[2D]:"
<<
global_work_size
[
0
]
<<
" "
<<
global_work_size
[
1
]
<<
" "
<<
global_work_size
[
2
];
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
auto
*
scale_img
=
scale_image_
.
data
<
half_t
,
cl
::
Image2D
>
();
auto
*
bias_img
=
bias_image_
.
data
<
half_t
,
cl
::
Image2D
>
();
float
epsilon
=
instance_norm_param_
->
epsilon
;
int
arg_idx
=
0
;
cl_int
status
=
kernel
.
setArg
(
arg_idx
++
,
*
x_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
out_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
scale_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
*
bias_img
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
epsilon
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
in_h
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
arg_idx
++
,
in_w
);
CL_CHECK_FATAL
(
status
);
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
local_work_size
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_img
,
event_
);
}
protected:
param_t
*
instance_norm_param_
{
nullptr
};
std
::
string
kernel_func_name_
{
"instance_norm"
};
std
::
string
build_options_
{
"-DCL_DTYPE_half"
};
std
::
shared_ptr
<
cl
::
Event
>
event_
{
new
cl
::
Event
};
Tensor
scale_image_
;
Tensor
bias_image_
;
};
}
// namespace opencl
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
namespace
ocl
=
paddle
::
lite
::
kernels
::
opencl
;
REGISTER_LITE_KERNEL
(
instance_norm
,
kOpenCL
,
kFP16
,
kImageDefault
,
ocl
::
InstanceNormImageCompute
,
ImageDefault
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindOutput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"SavedMean"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"SavedVariance"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
lite/kernels/opencl/instance_norm_image_compute_test.cc
0 → 100644
浏览文件 @
604c5d4f
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <memory>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/profile/timer.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/test_helper.h"
#define FP16_MAX_DIFF (5e-3)
DEFINE_int32
(
warmup
,
0
,
"warmup times"
);
DEFINE_int32
(
repeats
,
1
,
"repeats times"
);
using
paddle
::
lite
::
profile
::
Timer
;
namespace
paddle
{
namespace
lite
{
void
instance_norm_ref
(
Tensor
*
x
,
Tensor
*
y
,
Tensor
*
scale
,
Tensor
*
bias
,
Tensor
*
saved_mean
,
Tensor
*
saved_variance
,
float
epsilon
)
{
auto
x_data
=
x
->
data
<
float
>
();
auto
scale_data
=
scale
->
data
<
float
>
();
auto
bias_data
=
bias
->
data
<
float
>
();
auto
y_data
=
y
->
mutable_data
<
float
>
();
auto
saved_mean_data
=
saved_mean
->
mutable_data
<
float
>
();
auto
saved_variance_data
=
saved_variance
->
mutable_data
<
float
>
();
int
n
=
x
->
dims
()[
0
];
int
c
=
x
->
dims
()[
1
];
int
spatial_size
=
x
->
dims
()[
2
]
*
x
->
dims
()[
3
];
// compute mean
for
(
int
i
=
0
;
i
<
n
*
c
;
++
i
)
{
const
float
*
x_ptr
=
x_data
+
i
*
spatial_size
;
float
sum
=
0.
f
;
for
(
int
j
=
0
;
j
<
spatial_size
;
++
j
)
{
sum
+=
x_ptr
[
j
];
}
saved_mean_data
[
i
]
=
sum
/
spatial_size
;
}
// compute variance
for
(
int
i
=
0
;
i
<
n
*
c
;
++
i
)
{
const
float
*
x_ptr
=
x_data
+
i
*
spatial_size
;
float
sum
=
0.
f
;
for
(
int
j
=
0
;
j
<
spatial_size
;
++
j
)
{
sum
+=
(
x_ptr
[
j
]
-
saved_mean_data
[
i
])
*
(
x_ptr
[
j
]
-
saved_mean_data
[
i
]);
}
saved_variance_data
[
i
]
=
1.
f
/
sqrtf
(
sum
/
spatial_size
+
epsilon
);
}
// compute out
for
(
int
i
=
0
;
i
<
n
*
c
;
++
i
)
{
const
float
*
x_ptr
=
x_data
+
i
*
spatial_size
;
float
*
y_ptr
=
y_data
+
i
*
spatial_size
;
float
scale_val
=
scale_data
[
i
%
c
];
float
bias_val
=
bias_data
[
i
%
c
];
for
(
int
j
=
0
;
j
<
spatial_size
;
++
j
)
{
y_ptr
[
j
]
=
scale_val
*
(
x_ptr
[
j
]
-
saved_mean_data
[
i
])
*
saved_variance_data
[
i
]
+
bias_val
;
}
}
}
// #define INSTANCE_NORM_FP16_LOOP_TEST
// #define INSTANCE_NORM_FP16_PRINT_RESULT
TEST
(
instance_norm_image2d
,
compute
)
{
#ifdef INSTANCE_NORM_FP16_LOOP_TEST
for
(
auto
n
:
{
1
,
3
})
{
for
(
auto
c
:
{
1
,
3
,
8
,
32
,
65
})
{
for
(
auto
h
:
{
4
,
20
,
64
,
112
,
224
})
{
for
(
auto
w
:
{
2
,
20
,
64
,
112
,
224
})
{
#else
const
int
n
=
1
;
const
int
c
=
32
;
const
int
h
=
224
;
const
int
w
=
224
;
#endif // INSTANCE_NORM_FP16_LOOP_TEST
LOG
(
INFO
)
<<
"======== input shape[n,c,h,w]:"
<<
n
<<
" "
<<
c
<<
" "
<<
h
<<
" "
<<
w
<<
" ========"
;
auto
kernels
=
KernelRegistry
::
Global
().
Create
(
"instance_norm"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
kernels
.
empty
());
auto
kernel
=
std
::
move
(
kernels
.
front
());
LOG
(
INFO
)
<<
"get kernel:"
<<
kernel
->
doc
();
lite
::
Tensor
x
,
out
,
out_ref
,
scale
,
bias
,
saved_mean
,
saved_variance
;
operators
::
InstanceNormParam
param
;
param
.
x
=
&
x
;
param
.
out
=
&
out
;
param
.
scale
=
&
scale
;
param
.
bias
=
&
bias
;
param
.
saved_mean
=
&
saved_mean
;
param
.
saved_variance
=
&
saved_variance
;
param
.
epsilon
=
1e-5
;
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
kernel
->
SetParam
(
param
);
std
::
unique_ptr
<
KernelContext
>
instance_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
instance_context
->
As
<
OpenCLContext
>
()));
kernel
->
SetContext
(
std
::
move
(
instance_context
));
const
DDim
in_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
n
,
c
,
h
,
w
});
x
.
Resize
(
in_dim
);
out
.
Resize
(
in_dim
);
out_ref
.
Resize
(
in_dim
);
scale
.
Resize
({
c
});
bias
.
Resize
({
c
});
saved_mean
.
Resize
({
n
*
c
});
saved_variance
.
Resize
({
n
*
c
});
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
auto
*
scale_data
=
scale
.
mutable_data
<
float
>
();
auto
*
bias_data
=
bias
.
mutable_data
<
float
>
();
auto
*
saved_mean_data
=
saved_mean
.
mutable_data
<
float
>
();
auto
*
saved_variance_data
=
saved_variance
.
mutable_data
<
float
>
();
std
::
default_random_engine
engine
;
std
::
uniform_real_distribution
<
float
>
dist
(
-
1
,
1
);
int
sum
=
n
*
c
*
h
*
w
;
for
(
int
i
=
0
;
i
<
sum
;
++
i
)
{
x_data
[
i
]
=
dist
(
engine
);
}
for
(
int
i
=
0
;
i
<
c
;
++
i
)
{
scale_data
[
i
]
=
dist
(
engine
);
bias_data
[
i
]
=
dist
(
engine
);
}
//! run reference instance norm
instance_norm_ref
(
&
x
,
&
out_ref
,
&
scale
,
&
bias
,
&
saved_mean
,
&
saved_variance
,
1e-5
);
LOG
(
INFO
)
<<
"prepare input"
;
CLImageConverterDefault
*
default_converter
=
new
CLImageConverterDefault
();
DDim
x_image_shape
=
default_converter
->
InitImageDimInfoWith
(
in_dim
);
LOG
(
INFO
)
<<
"x_image_shape = "
<<
x_image_shape
[
0
]
<<
" "
<<
x_image_shape
[
1
];
std
::
vector
<
half_t
>
x_image_data
(
x_image_shape
.
production
()
*
4
);
// 4 : RGBA
default_converter
->
NCHWToImage
(
x_data
,
x_image_data
.
data
(),
in_dim
);
auto
*
x_image
=
x
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
x_image_shape
[
0
],
x_image_shape
[
1
],
x_image_data
.
data
());
auto
*
out_image
=
out
.
mutable_data
<
half_t
,
cl
::
Image2D
>
(
x_image_shape
[
0
],
x_image_shape
[
1
]);
//! warm up
for
(
int
i
=
0
;
i
<
FLAGS_warmup
;
++
i
)
{
kernel
->
Launch
();
}
context
->
As
<
OpenCLContext
>
().
cl_context
()
->
GetCommandQueue
().
finish
();
//! compute
Timer
t0
;
t0
.
Start
();
for
(
int
i
=
0
;
i
<
FLAGS_repeats
;
++
i
)
{
kernel
->
Launch
();
}
context
->
As
<
OpenCLContext
>
().
cl_context
()
->
GetCommandQueue
().
finish
();
t0
.
Stop
();
double
gops
=
6
*
sum
;
LOG
(
INFO
)
<<
"avg time: "
<<
t0
.
LapTimes
().
Avg
()
/
FLAGS_repeats
<<
" ms, "
<<
"avg GOPs: "
<<
1e-6
*
gops
*
FLAGS_repeats
/
t0
.
LapTimes
().
Avg
()
<<
" GOPs"
;
const
size_t
cl_image2d_row_pitch
{
0
};
const
size_t
cl_image2d_slice_pitch
{
0
};
half_t
*
out_image_data
=
new
half_t
[
x_image_shape
.
production
()
*
4
];
TargetWrapperCL
::
ImgcpySync
(
out_image_data
,
out_image
,
x_image_shape
[
0
],
x_image_shape
[
1
],
cl_image2d_row_pitch
,
cl_image2d_slice_pitch
,
IoDirection
::
DtoH
);
float
*
out_data
=
new
float
[
x_image_shape
.
production
()
*
4
];
default_converter
->
ImageToNCHW
(
out_image_data
,
out_data
,
x_image_shape
,
in_dim
);
// result
#ifdef INSTANCE_NORM_FP16_PRINT_RESULT
LOG
(
INFO
)
<<
"---- print kernel result (input -> output) ----"
;
for
(
int
eidx
=
0
;
eidx
<
in_dim
.
production
();
++
eidx
)
{
std
::
cout
<<
x_data
[
eidx
]
<<
" -> "
<<
out_data
[
eidx
]
<<
std
::
endl
;
}
#endif // INSTANCE_NORM_FP16_PRINT_RESULT
auto
*
out_ref_data
=
out_ref
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
in_dim
.
production
();
i
++
)
{
auto
abs_diff
=
abs
(
out_data
[
i
]
-
out_ref_data
[
i
]);
auto
relative_diff
=
COMPUTE_RELATIVE_DIFF
(
out_data
[
i
],
out_ref_data
[
i
]);
EXPECT_EQ
(
(
relative_diff
<=
FP16_MAX_DIFF
)
||
(
abs_diff
<=
FP16_MAX_DIFF
),
true
);
if
((
relative_diff
>
FP16_MAX_DIFF
)
&&
(
abs_diff
>
FP16_MAX_DIFF
))
{
LOG
(
ERROR
)
<<
"error idx:"
<<
i
<<
", in_data["
<<
i
<<
"]: "
<<
x_data
[
i
]
<<
", out_data["
<<
i
<<
"]: "
<<
out_data
[
i
]
<<
", out_ref["
<<
i
<<
"]: "
<<
out_ref_data
[
i
]
<<
", abs_diff: "
<<
abs_diff
<<
", relative_diff: "
<<
relative_diff
<<
", FP16_MAX_DIFF: "
<<
FP16_MAX_DIFF
;
}
}
delete
[]
out_data
;
delete
[]
out_image_data
;
#ifdef INSTANCE_NORM_FP16_LOOP_TEST
}
// w
}
// h
}
// c
}
// n
#else
// nothing to do.
#endif
}
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
instance_norm
,
kOpenCL
,
kFP16
,
kImageDefault
,
ImageDefault
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录