instance_norm_image_compute.cc 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class InstanceNormImageCompute : public KernelLite<TARGET(kOpenCL),
                                                   PRECISION(kFP16),
                                                   DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::InstanceNormParam;

  std::string doc() const override {
    return "InstanceNorm using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#if 1  // onnx/pytorch version
  void PrepareForRun() override {
    instance_norm_param_ = param_.get_mutable<param_t>();
    auto out = instance_norm_param_->out;
    auto out_dims = out->dims();
    const int out_n = out_dims[0];
    const int out_c = out_dims[1];
    const int out_h = out_dims[2];
    const int out_w = out_dims[3];
    const int c_group = (out_dims[1] + 3) / 4;

    // TODO(ysh329): add instance_norm + relu pass
    // std::string build_options_ += "-DRELU";
    if (out_h == 128) {
      build_options_ += " -DLOCAL_MEM_128";
    } else if (out_h == 64) {
      build_options_ += " -DLOCAL_MEM_64";
    } else if (out_h > 256) {
      LOG(FATAL) << "Unsupported input height:" << out_h << " of instance norm";
    }

    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/instance_norm_kernel.cl", build_options_);
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = instance_norm_param_->x;
    auto* out = instance_norm_param_->out;
    auto x_dims = x->dims();
    auto out_dims = out->dims();

    const int out_n = out_dims[0];
    const int out_c_group = (out_dims[1] + 3) / 4;
    const int out_h = out_dims[2];
    const int out_w = out_dims[3];

    float epsilon = instance_norm_param_->epsilon;
    auto device_info = CLRuntime::Global()->GetDeviceInfo();
    int max_work_item_size1 = device_info["CL_DEVICE_MAX_WORK_ITEM_SIZES_1"];
    int lws0 = 1;
    int lws1 =
        std::min(static_cast<int>(max_work_item_size1), std::min(256, out_w));
    int lws2 = 1;
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(out_n * out_c_group),
                    static_cast<cl::size_type>(lws1),
                    static_cast<cl::size_type>(lws2)};
    auto local_work_size = cl::NDRange{static_cast<cl::size_type>(lws0),
                                       static_cast<cl::size_type>(lws1),
                                       static_cast<cl::size_type>(lws2)};

#ifndef LITE_SHUTDOWN_LOG
    VLOG(4) << "global_work_size:" << static_cast<int>(global_work_size[0])
            << " " << static_cast<int>(global_work_size[1]) << " "
            << static_cast<int>(global_work_size[2]);
    VLOG(4) << "local_work_size:" << static_cast<int>(local_work_size[0]) << " "
            << static_cast<int>(local_work_size[1]) << " "
            << static_cast<int>(local_work_size[2]);
    VLOG(4) << "out_w:" << out_w;
    VLOG(4) << "out_h:" << out_h;
    VLOG(4) << "out_c_group:" << out_c_group;
    VLOG(4) << "lws1:" << lws1;
    VLOG(4) << "lws2:" << lws2;
    VLOG(4) << "epsilon:" << epsilon;
#endif

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status = kernel.setArg(0, out_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(1, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(2, out_c_group);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(3, lws1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(4, lws2);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(5, epsilon);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(6, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(7, *out_img);
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        local_work_size,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
  }

#else  // paddle version
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  void PrepareForRun() override {
    instance_norm_param_ = param_.get_mutable<param_t>();
    auto channel = instance_norm_param_->scale->dims()[0];
    auto batch = instance_norm_param_->x->dims()[0];
    int64_t cgroup = (channel + 3) / 4;
    int64_t cround = cgroup * 4;
    std::vector<half_t> scale_img(cround * batch);
    std::vector<half_t> bias_img(cround * batch);
    const float* scale_data = instance_norm_param_->scale->data<float>();
    const float* bias_data = instance_norm_param_->bias->data<float>();
    //! init scale_img bias_img data
    for (int i = 0; i < channel; ++i) {
      scale_img[i] = Float2Half(scale_data[i]);
      bias_img[i] = Float2Half(bias_data[i]);
    }
    for (int i = channel; i < cround; ++i) {
      scale_img[i] = Float2Half(0.f);
      bias_img[i] = Float2Half(0.f);
    }
    for (int i = 1; i < batch; ++i) {
      memcpy(scale_img.data() + i * cround,
             scale_img.data(),
             cround * sizeof(half_t));
      memcpy(bias_img.data() + i * cround,
             bias_img.data(),
             cround * sizeof(half_t));
    }
    DDim scale_img_size{{cgroup, batch}};
    scale_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], scale_img.data());
    bias_image_.mutable_data<half_t, cl::Image2D>(
        scale_img_size[0], scale_img_size[1], bias_img.data());
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/instance_norm_kernel.cl", build_options_);
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x = instance_norm_param_->x;
    auto* out = instance_norm_param_->out;
    auto in_dims = x->dims();

    int batch = in_dims[0];
    int channel = in_dims[1];
    int in_h = in_dims[2];
    int in_w = in_dims[3];

200
#ifndef LITE_SHUTDOWN_LOG
201 202 203
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
204
#endif
205 206 207 208 209

    auto out_image_shape = InitImageDimInfoWith(in_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);
210 211

#ifndef LITE_SHUTDOWN_LOG
212 213 214 215
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
216
#endif
217 218 219 220 221 222 223 224 225 226 227

    int threads = 512;
    int group_size_x = (channel + 3) / 4;
    int group_size_y = batch;
    auto local_work_size = cl::NDRange{static_cast<cl::size_type>(threads),
                                       static_cast<cl::size_type>(1),
                                       static_cast<cl::size_type>(1)};
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(group_size_x * threads),
                    static_cast<cl::size_type>(group_size_y),
                    static_cast<cl::size_type>(1)};
228 229

#ifndef LITE_SHUTDOWN_LOG
230 231 232 233
    VLOG(4) << "local_work_size:[2D]:" << local_work_size[0] << " "
            << local_work_size[1] << " " << local_work_size[2];
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
234
#endif
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    auto* scale_img = scale_image_.data<half_t, cl::Image2D>();
    auto* bias_img = bias_image_.data<half_t, cl::Image2D>();
    float epsilon = instance_norm_param_->epsilon;

    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *scale_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *bias_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, epsilon);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        local_work_size,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
  }
268
#endif
269 270 271

 protected:
  param_t* instance_norm_param_{nullptr};
272
  std::string kernel_func_name_{"instance_norm_onnx"};
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
  Tensor scale_image_;
  Tensor bias_image_;
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(instance_norm,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::InstanceNormImageCompute,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Y",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .BindInput("Scale", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedMean", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SavedVariance", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();