cl_context.cc 7.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "lite/backends/opencl/cl_context.h"
16
#include <algorithm>
Y
Yan Chunwei 已提交
17 18 19
#include <memory>
#include <string>
#include <utility>
20 21
#include "lite/backends/opencl/cl_runtime.h"
#include "lite/backends/opencl/cl_utility.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "lite/utils/cp_logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {

cl::CommandQueue &CLContext::GetCommandQueue() {
  return CLRuntime::Global()->command_queue();
}

cl::Context &CLContext::GetContext() { return CLRuntime::Global()->context(); }

cl::Program &CLContext::GetProgram(const std::string &file_name,
                                   const std::string &options) {
  STL::stringstream program_key_ss;
  program_key_ss << file_name << options;
  std::string program_key = program_key_ss.str();
39 40 41 42

  auto &programs = CLRuntime::Global()->programs();
  auto it = programs.find(program_key);
  if (it != programs.end()) {
Y
Yan Chunwei 已提交
43 44 45 46
    VLOG(3) << " --- program -> " << program_key << " has been built --- ";
    return *(it->second);
  }

47
  auto program = CLRuntime::Global()->CreateProgram(GetContext(), file_name);
Y
Yan Chunwei 已提交
48 49 50 51
  VLOG(3) << " --- begin build program -> " << program_key << " --- ";
  CLRuntime::Global()->BuildProgram(program.get(), options);
  VLOG(3) << " --- end build program -> " << program_key << " --- ";

52
  programs[program_key] = std::move(program);
Y
Yan Chunwei 已提交
53

54
  return *(programs[program_key]);
Y
Yan Chunwei 已提交
55 56 57 58
}

void CLContext::AddKernel(const std::string &kernel_name,
                          const std::string &file_name,
59 60
                          const std::string &options,
                          const std::string &time_stamp) {
Y
Yan Chunwei 已提交
61 62 63 64 65 66 67 68 69
  cl_int status{CL_SUCCESS};
  VLOG(3) << " --- to get program " << file_name << " --- ";
  auto program = GetProgram(file_name, options);
  VLOG(3) << " --- end get program --- ";
  VLOG(3) << " --- to create kernel: " << kernel_name << " --- ";
  std::unique_ptr<cl::Kernel> kernel(
      new cl::Kernel(program, kernel_name.c_str(), &status));
  CL_CHECK_FATAL(status);
  VLOG(3) << " --- end create kernel --- ";
70 71 72 73

  auto &kernels = CLRuntime::Global()->kernels();
  auto &kernel_offset_map = CLRuntime::Global()->kernel_offset();
  kernels.emplace_back(std::move(kernel));
Y
Yan Chunwei 已提交
74
  STL::stringstream kernel_key;
75 76
  kernel_key << kernel_name << options << time_stamp;
  kernel_offset_map[kernel_key.str()] = kernels.size() - 1;
Y
Yan Chunwei 已提交
77 78
}

开心的小妮's avatar
开心的小妮 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
std::shared_ptr<cl::Kernel> CLContext::CreateKernel(
    const std::string &kernel_name,
    const std::string &file_name,
    const std::string &options,
    const std::string &time_stamp) {
  cl_int status{CL_SUCCESS};
  VLOG(3) << " --- to get program " << file_name << " --- ";
  auto program = GetProgram(file_name, options);
  VLOG(3) << " --- end get program --- ";
  VLOG(3) << " --- to create kernel: " << kernel_name << " --- ";
  std::shared_ptr<cl::Kernel> kernel(
      new cl::Kernel(program, kernel_name.c_str(), &status));
  CL_CHECK_FATAL(status);
  VLOG(3) << " --- end create kernel --- ";
  return kernel;
}

Y
Yan Chunwei 已提交
96
cl::Kernel &CLContext::GetKernel(const int index) {
97 98 99
  auto &kernels = CLRuntime::Global()->kernels();
  VLOG(3) << " --- kernel count: " << kernels.size() << " --- ";
  CHECK(static_cast<size_t>(index) < kernels.size())
Y
Yan Chunwei 已提交
100
      << "The index must be less than the size of kernels.";
101
  CHECK(kernels[index] != nullptr)
Y
Yan Chunwei 已提交
102
      << "The target kernel pointer cannot be null.";
103
  return *(kernels[index]);
Y
Yan Chunwei 已提交
104 105 106
}

cl::Kernel &CLContext::GetKernel(const std::string &name) {
107 108 109 110
  auto &kernel_offset_map = CLRuntime::Global()->kernel_offset();
  auto it = kernel_offset_map.find(name);
  CHECK(it != kernel_offset_map.end()) << "Cannot find the kernel function: "
                                       << name;
Y
Yan Chunwei 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  return GetKernel(it->second);
}

cl::NDRange CLContext::DefaultWorkSize(const CLImage &image) {
  // n c h w
  auto image_dim = image.tensor_dims();
  if (image_dim.size() == 4) {
    auto n = image_dim[0];
    auto h = image_dim[2];
    auto w = image_dim[3];
    auto image_width = image.ImageWidth();
    auto work_size_0 = image_width / w;
    auto work_size_1 = w;
    auto work_size_2 = n * h;
    return cl::NDRange{static_cast<size_t>(work_size_0),
                       static_cast<size_t>(work_size_1),
                       static_cast<size_t>(work_size_2)};
  } else if (image_dim.size() == 2) {
    return cl::NDRange{static_cast<size_t>(1),
                       static_cast<size_t>(image.ImageWidth()),
                       static_cast<size_t>(image.ImageHeight())};
  } else if (image_dim.size() == 1) {
    return cl::NDRange{static_cast<size_t>(1),
                       static_cast<size_t>(image.ImageWidth()),
                       static_cast<size_t>(1)};
  } else if (image_dim.size() == 3) {
    auto c = image_dim[0];
    auto h = image_dim[1];
    auto w = image_dim[2];
    return cl::NDRange{static_cast<size_t>((c + 3) / 4),
                       static_cast<size_t>(w),
                       static_cast<size_t>(h)};
  } else {
    LOG(FATAL) << "Not support this dimension, need to be implemented!";
    return cl::NDRange{};
  }
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
cl::NDRange CLContext::LocalWorkSizeTurn(cl::NDRange global_work_size,
                                         size_t max_work_size,
                                         int divisor) {
  int preferred_lws = 0;
#if 1
  auto gws0 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws2 = global_work_size[2];
#else
  auto gws2 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws0 = global_work_size[2];
#endif
  if (divisor > 1) {
    max_work_size /= divisor;
  }
  if (preferred_lws > 0 && preferred_lws <= max_work_size) {
    max_work_size = preferred_lws;
  }
  while (gws1 > max_work_size && max_work_size > 0) {
    gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1;
  }
  while (gws2 * gws1 > max_work_size && max_work_size > 0) {
    gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1;
  }
  while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) {
    gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1;
  }
#if 1
  return cl::NDRange{static_cast<size_t>(gws0),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws2)};
#else
  return cl::NDRange{static_cast<size_t>(gws2),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws0)};
#endif
}

188 189 190 191 192
cl::NDRange CLContext::LocalWorkSize(cl::NDRange global_work_size,
                                     size_t max_work_size) {
  int preferred_lws = 0;
  int divisor = 2;

193 194 195
  auto gws0 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws2 = global_work_size[2];
196 197 198 199 200 201 202

  if (divisor > 1) {
    max_work_size /= divisor;
  }
  if (preferred_lws > 0 && preferred_lws <= max_work_size) {
    max_work_size = preferred_lws;
  }
203 204
  while (gws1 > max_work_size && max_work_size > 0) {
    gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1;
205
  }
206 207
  while (gws2 * gws1 > max_work_size && max_work_size > 0) {
    gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1;
208
  }
209 210
  while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) {
    gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1;
211
  }
212 213 214
  return cl::NDRange{static_cast<size_t>(gws0),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws2)};
215 216
}

Y
Yan Chunwei 已提交
217 218
}  // namespace lite
}  // namespace paddle