cl_context.cc 7.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "lite/backends/opencl/cl_context.h"
16
#include <algorithm>
Y
Yan Chunwei 已提交
17 18 19
#include <memory>
#include <string>
#include <utility>
20 21
#include "lite/backends/opencl/cl_runtime.h"
#include "lite/backends/opencl/cl_utility.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "lite/utils/cp_logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {

cl::CommandQueue &CLContext::GetCommandQueue() {
  return CLRuntime::Global()->command_queue();
}

cl::Context &CLContext::GetContext() { return CLRuntime::Global()->context(); }

cl::Program &CLContext::GetProgram(const std::string &file_name,
                                   const std::string &options) {
  STL::stringstream program_key_ss;
  program_key_ss << file_name << options;
  std::string program_key = program_key_ss.str();
39 40 41 42

  auto &programs = CLRuntime::Global()->programs();
  auto it = programs.find(program_key);
  if (it != programs.end()) {
Y
Yan Chunwei 已提交
43 44 45 46
    VLOG(3) << " --- program -> " << program_key << " has been built --- ";
    return *(it->second);
  }

47
  auto program = CLRuntime::Global()->CreateProgram(GetContext(), file_name);
Y
Yan Chunwei 已提交
48 49 50 51 52

  VLOG(3) << " --- begin build program -> " << program_key << " --- ";
  CLRuntime::Global()->BuildProgram(program.get(), options);
  VLOG(3) << " --- end build program -> " << program_key << " --- ";

53
  programs[program_key] = std::move(program);
Y
Yan Chunwei 已提交
54

55
  return *(programs[program_key]);
Y
Yan Chunwei 已提交
56 57 58 59
}

void CLContext::AddKernel(const std::string &kernel_name,
                          const std::string &file_name,
60 61
                          const std::string &options,
                          const std::string &time_stamp) {
Y
Yan Chunwei 已提交
62 63 64 65 66 67 68 69 70
  cl_int status{CL_SUCCESS};
  VLOG(3) << " --- to get program " << file_name << " --- ";
  auto program = GetProgram(file_name, options);
  VLOG(3) << " --- end get program --- ";
  VLOG(3) << " --- to create kernel: " << kernel_name << " --- ";
  std::unique_ptr<cl::Kernel> kernel(
      new cl::Kernel(program, kernel_name.c_str(), &status));
  CL_CHECK_FATAL(status);
  VLOG(3) << " --- end create kernel --- ";
71 72 73 74

  auto &kernels = CLRuntime::Global()->kernels();
  auto &kernel_offset_map = CLRuntime::Global()->kernel_offset();
  kernels.emplace_back(std::move(kernel));
Y
Yan Chunwei 已提交
75
  STL::stringstream kernel_key;
76 77
  kernel_key << kernel_name << options << time_stamp;
  kernel_offset_map[kernel_key.str()] = kernels.size() - 1;
Y
Yan Chunwei 已提交
78 79 80
}

cl::Kernel &CLContext::GetKernel(const int index) {
81 82 83
  auto &kernels = CLRuntime::Global()->kernels();
  VLOG(3) << " --- kernel count: " << kernels.size() << " --- ";
  CHECK(static_cast<size_t>(index) < kernels.size())
Y
Yan Chunwei 已提交
84
      << "The index must be less than the size of kernels.";
85
  CHECK(kernels[index] != nullptr)
Y
Yan Chunwei 已提交
86
      << "The target kernel pointer cannot be null.";
87
  return *(kernels[index]);
Y
Yan Chunwei 已提交
88 89 90
}

cl::Kernel &CLContext::GetKernel(const std::string &name) {
91 92 93 94
  auto &kernel_offset_map = CLRuntime::Global()->kernel_offset();
  auto it = kernel_offset_map.find(name);
  CHECK(it != kernel_offset_map.end()) << "Cannot find the kernel function: "
                                       << name;
Y
Yan Chunwei 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  return GetKernel(it->second);
}

cl::NDRange CLContext::DefaultWorkSize(const CLImage &image) {
  // n c h w
  auto image_dim = image.tensor_dims();
  if (image_dim.size() == 4) {
    auto n = image_dim[0];
    auto h = image_dim[2];
    auto w = image_dim[3];
    auto image_width = image.ImageWidth();
    auto work_size_0 = image_width / w;
    auto work_size_1 = w;
    auto work_size_2 = n * h;
    return cl::NDRange{static_cast<size_t>(work_size_0),
                       static_cast<size_t>(work_size_1),
                       static_cast<size_t>(work_size_2)};
  } else if (image_dim.size() == 2) {
    return cl::NDRange{static_cast<size_t>(1),
                       static_cast<size_t>(image.ImageWidth()),
                       static_cast<size_t>(image.ImageHeight())};
  } else if (image_dim.size() == 1) {
    return cl::NDRange{static_cast<size_t>(1),
                       static_cast<size_t>(image.ImageWidth()),
                       static_cast<size_t>(1)};
  } else if (image_dim.size() == 3) {
    auto c = image_dim[0];
    auto h = image_dim[1];
    auto w = image_dim[2];
    return cl::NDRange{static_cast<size_t>((c + 3) / 4),
                       static_cast<size_t>(w),
                       static_cast<size_t>(h)};
  } else {
    LOG(FATAL) << "Not support this dimension, need to be implemented!";
    return cl::NDRange{};
  }
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
cl::NDRange CLContext::LocalWorkSizeTurn(cl::NDRange global_work_size,
                                         size_t max_work_size,
                                         int divisor) {
  int preferred_lws = 0;
#if 1
  auto gws0 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws2 = global_work_size[2];
#else
  auto gws2 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws0 = global_work_size[2];
#endif
  if (divisor > 1) {
    max_work_size /= divisor;
  }
  if (preferred_lws > 0 && preferred_lws <= max_work_size) {
    max_work_size = preferred_lws;
  }
  while (gws1 > max_work_size && max_work_size > 0) {
    gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1;
  }
  while (gws2 * gws1 > max_work_size && max_work_size > 0) {
    gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1;
  }
  while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) {
    gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1;
  }
#if 1
  return cl::NDRange{static_cast<size_t>(gws0),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws2)};
#else
  return cl::NDRange{static_cast<size_t>(gws2),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws0)};
#endif
}

172 173 174 175 176
cl::NDRange CLContext::LocalWorkSize(cl::NDRange global_work_size,
                                     size_t max_work_size) {
  int preferred_lws = 0;
  int divisor = 2;

177 178 179
  auto gws0 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws2 = global_work_size[2];
180 181 182 183 184 185 186

  if (divisor > 1) {
    max_work_size /= divisor;
  }
  if (preferred_lws > 0 && preferred_lws <= max_work_size) {
    max_work_size = preferred_lws;
  }
187 188
  while (gws1 > max_work_size && max_work_size > 0) {
    gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1;
189
  }
190 191
  while (gws2 * gws1 > max_work_size && max_work_size > 0) {
    gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1;
192
  }
193 194
  while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) {
    gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1;
195
  }
196 197 198
  return cl::NDRange{static_cast<size_t>(gws0),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws2)};
199 200
}

Y
Yan Chunwei 已提交
201 202
}  // namespace lite
}  // namespace paddle