cl_context.cc 6.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "lite/backends/opencl/cl_context.h"
16
#include <algorithm>
Y
Yan Chunwei 已提交
17 18 19
#include <memory>
#include <string>
#include <utility>
20 21
#include "lite/backends/opencl/cl_runtime.h"
#include "lite/backends/opencl/cl_utility.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "lite/utils/cp_logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {

cl::CommandQueue &CLContext::GetCommandQueue() {
  return CLRuntime::Global()->command_queue();
}

cl::Context &CLContext::GetContext() { return CLRuntime::Global()->context(); }

cl::Program &CLContext::GetProgram(const std::string &file_name,
                                   const std::string &options) {
  STL::stringstream program_key_ss;
  program_key_ss << file_name << options;
  std::string program_key = program_key_ss.str();
  auto it = programs_.find(program_key);
  if (it != programs_.end()) {
    VLOG(3) << " --- program -> " << program_key << " has been built --- ";
    return *(it->second);
  }

45
  auto program = CLRuntime::Global()->CreateProgram(GetContext(), file_name);
Y
Yan Chunwei 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

  VLOG(3) << " --- begin build program -> " << program_key << " --- ";
  CLRuntime::Global()->BuildProgram(program.get(), options);
  VLOG(3) << " --- end build program -> " << program_key << " --- ";

  programs_[program_key] = std::move(program);

  return *(programs_[program_key]);
}

void CLContext::AddKernel(const std::string &kernel_name,
                          const std::string &file_name,
                          const std::string &options) {
  cl_int status{CL_SUCCESS};
  VLOG(3) << " --- to get program " << file_name << " --- ";
  auto program = GetProgram(file_name, options);
  VLOG(3) << " --- end get program --- ";
  VLOG(3) << " --- to create kernel: " << kernel_name << " --- ";
  std::unique_ptr<cl::Kernel> kernel(
      new cl::Kernel(program, kernel_name.c_str(), &status));
  CL_CHECK_FATAL(status);
  VLOG(3) << " --- end create kernel --- ";
  kernels_.emplace_back(std::move(kernel));
  STL::stringstream kernel_key;
  kernel_key << kernel_name << options;
  kernel_offset_[kernel_key.str()] = kernels_.size() - 1;
}

cl::Kernel &CLContext::GetKernel(const int index) {
  VLOG(3) << " --- kernel count: " << kernels_.size() << " --- ";
  CHECK(static_cast<size_t>(index) < kernels_.size())
      << "The index must be less than the size of kernels.";
  CHECK(kernels_[index] != nullptr)
      << "The target kernel pointer cannot be null.";
  return *(kernels_[index]);
}

cl::Kernel &CLContext::GetKernel(const std::string &name) {
  auto it = kernel_offset_.find(name);
  CHECK(it != kernel_offset_.end()) << "Cannot find the kernel function: "
                                    << name;
  return GetKernel(it->second);
}

cl::NDRange CLContext::DefaultWorkSize(const CLImage &image) {
  // n c h w
  auto image_dim = image.tensor_dims();
  if (image_dim.size() == 4) {
    auto n = image_dim[0];
    auto h = image_dim[2];
    auto w = image_dim[3];
    auto image_width = image.ImageWidth();
    auto work_size_0 = image_width / w;
    auto work_size_1 = w;
    auto work_size_2 = n * h;
    return cl::NDRange{static_cast<size_t>(work_size_0),
                       static_cast<size_t>(work_size_1),
                       static_cast<size_t>(work_size_2)};
  } else if (image_dim.size() == 2) {
    return cl::NDRange{static_cast<size_t>(1),
                       static_cast<size_t>(image.ImageWidth()),
                       static_cast<size_t>(image.ImageHeight())};
  } else if (image_dim.size() == 1) {
    return cl::NDRange{static_cast<size_t>(1),
                       static_cast<size_t>(image.ImageWidth()),
                       static_cast<size_t>(1)};
  } else if (image_dim.size() == 3) {
    auto c = image_dim[0];
    auto h = image_dim[1];
    auto w = image_dim[2];
    return cl::NDRange{static_cast<size_t>((c + 3) / 4),
                       static_cast<size_t>(w),
                       static_cast<size_t>(h)};
  } else {
    LOG(FATAL) << "Not support this dimension, need to be implemented!";
    return cl::NDRange{};
  }
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
cl::NDRange CLContext::LocalWorkSizeTurn(cl::NDRange global_work_size,
                                         size_t max_work_size,
                                         int divisor) {
  int preferred_lws = 0;
#if 1
  auto gws0 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws2 = global_work_size[2];
#else
  auto gws2 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws0 = global_work_size[2];
#endif
  if (divisor > 1) {
    max_work_size /= divisor;
  }
  if (preferred_lws > 0 && preferred_lws <= max_work_size) {
    max_work_size = preferred_lws;
  }
  while (gws1 > max_work_size && max_work_size > 0) {
    gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1;
  }
  while (gws2 * gws1 > max_work_size && max_work_size > 0) {
    gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1;
  }
  while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) {
    gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1;
  }
#if 1
  return cl::NDRange{static_cast<size_t>(gws0),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws2)};
#else
  return cl::NDRange{static_cast<size_t>(gws2),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws0)};
#endif
}

164 165 166 167 168
cl::NDRange CLContext::LocalWorkSize(cl::NDRange global_work_size,
                                     size_t max_work_size) {
  int preferred_lws = 0;
  int divisor = 2;

169 170 171
  auto gws0 = global_work_size[0];
  auto gws1 = global_work_size[1];
  auto gws2 = global_work_size[2];
172 173 174 175 176 177 178

  if (divisor > 1) {
    max_work_size /= divisor;
  }
  if (preferred_lws > 0 && preferred_lws <= max_work_size) {
    max_work_size = preferred_lws;
  }
179 180
  while (gws1 > max_work_size && max_work_size > 0) {
    gws1 = gws1 % 2 == 0 ? gws1 / 2 : 1;
181
  }
182 183
  while (gws2 * gws1 > max_work_size && max_work_size > 0) {
    gws2 = gws2 % 2 == 0 ? gws2 / 2 : 1;
184
  }
185 186
  while (gws0 * gws1 * gws2 > max_work_size && max_work_size > 0) {
    gws0 = gws0 % 2 == 0 ? gws0 / 2 : 1;
187
  }
188 189 190
  return cl::NDRange{static_cast<size_t>(gws0),
                     static_cast<size_t>(gws1),
                     static_cast<size_t>(gws2)};
191 192
}

Y
Yan Chunwei 已提交
193 194
}  // namespace lite
}  // namespace paddle