cxx_api.h 8.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <mutex>  //NOLINT
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
#include <string>
#include <utility>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/core/op_lite.h"
#include "lite/core/optimizer.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite {

32 33 34 35 36 37 38
static const char TAILORD_OPS_SOURCE_LIST_FILENAME[] =
    ".tailored_ops_source_list";
static const char TAILORD_OPS_LIST_NAME[] = ".tailored_ops_list";
static const char TAILORD_KERNELS_SOURCE_LIST_FILENAME[] =
    ".tailored_kernels_source_list";
static const char TAILORD_KERNELS_LIST_NAME[] = ".tailored_kernels_list";

Y
Yan Chunwei 已提交
39 40 41 42 43 44
/*
 * Predictor for inference, input a model, it will optimize and execute it.
 */
class LITE_API Predictor {
 public:
  // Create an empty predictor.
D
DannyIsFunny 已提交
45 46 47 48
  Predictor() {
    scope_ = std::make_shared<Scope>();
    program_desc_ = std::make_shared<cpp::ProgramDesc>();
  }
49

Y
Yan Chunwei 已提交
50 51 52
  // Create a predictor with the weight variable scope set.
  explicit Predictor(const std::shared_ptr<lite::Scope>& root_scope)
      : scope_(root_scope) {}
D
DannyIsFunny 已提交
53
  Predictor(const std::shared_ptr<cpp::ProgramDesc>& desc,
D
DannyIsFunny 已提交
54 55 56
            const std::shared_ptr<Scope>& root,
            const std::vector<Place>& valid_places)
      : program_desc_(desc), scope_(root) {
D
DannyIsFunny 已提交
57 58
    Program program(*desc.get(), scope_, valid_places);
    optimizer_ = Optimizer(std::move(program), valid_places);
D
DannyIsFunny 已提交
59 60 61
    exec_scope_ = optimizer_.exec_scope();
    valid_places_ = valid_places;
  }
Y
Yan Chunwei 已提交
62 63

  // Build from a model, with places set for hardware config.
64 65 66 67 68 69
  void Build(
      const lite_api::CxxConfig& config,
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf);

Y
Yan Chunwei 已提交
70 71
  void Build(
      const std::string& model_path,
72 73
      const std::string& model_file_path,
      const std::string& param_file_path,
Y
Yan Chunwei 已提交
74 75
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
76 77
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool memory_from_memory = false);
Y
Yan Chunwei 已提交
78

D
DannyIsFunny 已提交
79
  void Build(const std::shared_ptr<cpp::ProgramDesc>& desc,
Y
Yan Chunwei 已提交
80 81 82
             const std::vector<Place>& valid_places,
             const std::vector<std::string>& passes = {});

H
haozech 已提交
83
  std::shared_ptr<Predictor> Clone(
C
chenhaoze 已提交
84
      const std::vector<std::string>& var_names) const {
D
DannyIsFunny 已提交
85 86 87 88
    //    CHECK(program_desc_) << "Both program and scope of current predicotr
    //    should  be not be nullptr in Clone mode." ;
    //    CHECK(scope_) << "Both program and scope of current predicotr should
    //    be not be nullptr in Clone mode.";
H
haozech 已提交
89
    for (auto i : var_names) {
C
chenhaoze 已提交
90 91 92 93
      this->exec_scope_->Var(i);
      auto* tensor = this->scope_->Var(i)->GetMutable<lite::Tensor>();
      auto* sub_tensor = this->exec_scope_->Var(i)->GetMutable<lite::Tensor>();
      sub_tensor->CopyDataFrom(*tensor);
H
haozech 已提交
94
    }
D
DannyIsFunny 已提交
95 96 97 98 99
    auto predictor =
        std::make_shared<Predictor>(program_desc_, scope_, valid_places_);
    return predictor;
  }

Y
Yan Chunwei 已提交
100 101 102 103 104 105 106 107 108 109 110 111
  void GenRuntimeProgram();

  // Run the predictor for a single batch of data.
  void Run() {
    if (!program_generated_) {
      GenRuntimeProgram();
    }
    program_->Run();
  }

  // Get offset-th col of feed inputs.
  lite::Tensor* GetInput(size_t offset);
112 113 114
  // get input by name.
  lite::Tensor* GetInputByName(const std::string& name);
  // get inputnames and get outputnames.
S
sangoly 已提交
115 116
  std::vector<std::string> GetInputNames();
  std::vector<std::string> GetOutputNames();
D
DannyIsFunny 已提交
117 118 119
  // get param names
  std::vector<std::string> GetParamNames();

120
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
121 122 123

  // Get offset-th col of fetch results.
  const lite::Tensor* GetOutput(size_t offset) const;
124
  std::vector<const lite::Tensor*> GetOutputs() const;
Y
Yan Chunwei 已提交
125 126

  const cpp::ProgramDesc& program_desc() const;
D
DannyIsFunny 已提交
127 128 129
  // get a mutable tensor according to its name
  lite::Tensor* GetMutableTensor(const std::string& name);
  // get a const tensor according to its name
Y
Yan Chunwei 已提交
130 131 132 133 134 135
  const lite::Tensor* GetTensor(const std::string& name) const;
  const RuntimeProgram& runtime_program() const;

  // This method is disabled in mobile, for unnecessary dependencies required.
  void SaveModel(
      const std::string& dir,
136 137 138
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool record_info = false);
  void SaveOpKernelInfo(const std::string& model_dir);
Y
Yan Chunwei 已提交
139

M
mapingshuo 已提交
140 141 142 143 144 145 146 147
  // #ifdef LITE_WITH_TRAIN
  //   void Run(const std::vector<framework::Tensor>& tensors) {
  //     FeedVars(tensors);
  //     program_->Run();
  //   }

  //   void FeedVars(const std::vector<framework::Tensor>& tensors);
  // #endif
Y
Yan Chunwei 已提交
148 149 150

 private:
  Optimizer optimizer_;
D
DannyIsFunny 已提交
151
  std::shared_ptr<cpp::ProgramDesc> program_desc_;
Y
Yan Chunwei 已提交
152
  std::shared_ptr<Scope> scope_;
C
chenhaoze 已提交
153
  Scope* exec_scope_;
Y
Yan Chunwei 已提交
154 155
  std::unique_ptr<RuntimeProgram> program_;
  bool program_generated_{false};
156 157
  std::vector<std::string> input_names_;
  std::vector<std::string> output_names_;
D
DannyIsFunny 已提交
158
  std::vector<Place> valid_places_;
Y
Yan Chunwei 已提交
159 160
};

S
sangoly 已提交
161 162
class CxxPaddleApiImpl : public lite_api::PaddlePredictor {
 public:
D
DannyIsFunny 已提交
163
  CxxPaddleApiImpl() { raw_predictor_ = std::make_shared<Predictor>(); }
D
DannyIsFunny 已提交
164 165
  explicit CxxPaddleApiImpl(const std::shared_ptr<Predictor>& raw_predictor)
      : raw_predictor_(raw_predictor) {}
S
sangoly 已提交
166 167 168 169 170 171 172 173 174 175

  /// Create a new predictor from a config.
  void Init(const lite_api::CxxConfig& config);

  std::unique_ptr<lite_api::Tensor> GetInput(int i) override;

  std::unique_ptr<const lite_api::Tensor> GetOutput(int i) const override;

  void Run() override;

C
chenhaoze 已提交
176 177
  std::shared_ptr<lite_api::PaddlePredictor> Clone(
      const std::vector<std::string>& var_names);
178

S
sangoly 已提交
179 180 181 182 183
  std::string GetVersion() const override;

  // get inputs names and get outputs names
  std::vector<std::string> GetInputNames() override;
  std::vector<std::string> GetOutputNames() override;
D
DannyIsFunny 已提交
184 185
  // get param names
  std::vector<std::string> GetParamNames() override;
S
sangoly 已提交
186

D
DannyIsFunny 已提交
187
  // get tensor according to tensor's name
S
sangoly 已提交
188 189
  std::unique_ptr<const lite_api::Tensor> GetTensor(
      const std::string& name) const override;
D
DannyIsFunny 已提交
190 191 192
  // get a mutable tensor according to tensor's name
  std::unique_ptr<lite_api::Tensor> GetMutableTensor(
      const std::string& name) override;
S
sangoly 已提交
193 194 195 196 197

  // Get InputTebsor by name
  std::unique_ptr<lite_api::Tensor> GetInputByName(
      const std::string& name) override;

198 199 200 201
  void SaveOptimizedModel(
      const std::string& model_dir,
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool record_info = false) override;
S
sangoly 已提交
202 203

 private:
D
DannyIsFunny 已提交
204
  std::shared_ptr<Predictor> raw_predictor_;
205 206
  lite_api::CxxConfig config_;
  std::mutex mutex_;
D
DannyIsFunny 已提交
207
  bool status_is_cloned_{false};
S
sangoly 已提交
208 209
};

Y
Yan Chunwei 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * An executor for training.
 *
 * Usage:
 *
 * CXXTrainer trainer(...);
 * trainer.RunStartupProgram(...);
 * auto exe = BuildMainProgramExecutor(...);
 *
 * for (auto& epoch : epoches) {
 *   auto* tensor0 = exe.GetInput(...);
 *   // fill data for tensor0
 *   exe.Run();
 * }
#ifdef LITE_WITH_X86
class LITE_API CXXTrainer {
 public:
  CXXTrainer(const std::shared_ptr<lite::Scope>& root_scope,
             const std::vector<Place>& valid_places)
      : scope_(root_scope),
        valid_places_(valid_places),
        main_program_executor_(Predictor(scope_)) {}

  // Build the RuntimeProgram cache for the main program. The cache will run
  // multiple times for the epoches.
  // NOTE Just support to execute the 0-th block currently.
  Predictor& BuildMainProgramExecutor(const framework::proto::ProgramDesc& desc,
                                      int block_id = 0) {
238
    main_program_executor_.Build(desc, valid_places_);
Y
Yan Chunwei 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    return main_program_executor_;
  }

#ifdef LITE_WITH_TRAIN
  Predictor& BuildMainProgramExecutor(framework::ProgramDesc& desc) {  // NOLINT
    return BuildMainProgramExecutor(*desc.Proto());
  }

  void RunStartupProgram(framework::ProgramDesc& desc) {  // NOLINT
    RunStartupProgram(*desc.Proto());
  }
#endif

  // Run the startup program. It just executes once, no cache needed.
  void RunStartupProgram(const framework::proto::ProgramDesc& desc,
                         int block_id = 0) {
    Predictor exe(scope_);
256
    exe.Build(desc,  valid_places_);
Y
Yan Chunwei 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    exe.Run();
  }

 private:
  std::shared_ptr<lite::Scope> scope_;
  std::vector<Place> valid_places_;

  // The training program.
  Predictor main_program_executor_;
};
#endif
*/

}  // namespace lite
}  // namespace paddle