cxx_api.h 7.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <mutex>  //NOLINT
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
#include <string>
#include <utility>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/core/op_lite.h"
#include "lite/core/optimizer.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite {

32 33 34 35 36 37 38
static const char TAILORD_OPS_SOURCE_LIST_FILENAME[] =
    ".tailored_ops_source_list";
static const char TAILORD_OPS_LIST_NAME[] = ".tailored_ops_list";
static const char TAILORD_KERNELS_SOURCE_LIST_FILENAME[] =
    ".tailored_kernels_source_list";
static const char TAILORD_KERNELS_LIST_NAME[] = ".tailored_kernels_list";

Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46 47 48
/*
 * Predictor for inference, input a model, it will optimize and execute it.
 */
class LITE_API Predictor {
 public:
  // Create an empty predictor.
  Predictor() { scope_ = std::make_shared<Scope>(); }
  // Create a predictor with the weight variable scope set.
  explicit Predictor(const std::shared_ptr<lite::Scope>& root_scope)
      : scope_(root_scope) {}
D
DannyIsFunny 已提交
49 50 51 52 53 54 55 56 57 58 59
  Predictor(const cpp::ProgramDesc& desc,
            const std::shared_ptr<Scope>& root,
            const std::vector<Place>& valid_places)
      : program_desc_(desc), scope_(root) {
    optimizer_ =
        Optimizer(new Program(desc, scope_, valid_places), valid_places);
    exec_scope_ = optimizer_.exec_scope();
    GenRuntimeProgram();
    valid_places_ = valid_places;
    PrepareFeedFetch();
  }
Y
Yan Chunwei 已提交
60 61

  // Build from a model, with places set for hardware config.
62 63 64 65 66 67
  void Build(
      const lite_api::CxxConfig& config,
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf);

Y
Yan Chunwei 已提交
68 69
  void Build(
      const std::string& model_path,
70 71
      const std::string& model_file_path,
      const std::string& param_file_path,
Y
Yan Chunwei 已提交
72 73
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
74 75
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool memory_from_memory = false);
Y
Yan Chunwei 已提交
76 77 78 79 80

  void Build(const cpp::ProgramDesc& desc,
             const std::vector<Place>& valid_places,
             const std::vector<std::string>& passes = {});

D
DannyIsFunny 已提交
81 82 83 84 85 86 87 88 89 90
  std::shared_ptr<Predictor> Clone() const {
    //    CHECK(program_desc_) << "Both program and scope of current predicotr
    //    should  be not be nullptr in Clone mode." ;
    //    CHECK(scope_) << "Both program and scope of current predicotr should
    //    be not be nullptr in Clone mode.";
    auto predictor =
        std::make_shared<Predictor>(program_desc_, scope_, valid_places_);
    return predictor;
  }

Y
Yan Chunwei 已提交
91 92 93 94 95 96 97 98 99 100 101 102
  void GenRuntimeProgram();

  // Run the predictor for a single batch of data.
  void Run() {
    if (!program_generated_) {
      GenRuntimeProgram();
    }
    program_->Run();
  }

  // Get offset-th col of feed inputs.
  lite::Tensor* GetInput(size_t offset);
103 104 105
  // get input by name.
  lite::Tensor* GetInputByName(const std::string& name);
  // get inputnames and get outputnames.
S
sangoly 已提交
106 107
  std::vector<std::string> GetInputNames();
  std::vector<std::string> GetOutputNames();
108
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
109 110 111

  // Get offset-th col of fetch results.
  const lite::Tensor* GetOutput(size_t offset) const;
112
  std::vector<const lite::Tensor*> GetOutputs() const;
Y
Yan Chunwei 已提交
113 114 115 116 117 118 119 120

  const cpp::ProgramDesc& program_desc() const;
  const lite::Tensor* GetTensor(const std::string& name) const;
  const RuntimeProgram& runtime_program() const;

  // This method is disabled in mobile, for unnecessary dependencies required.
  void SaveModel(
      const std::string& dir,
121 122 123
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool record_info = false);
  void SaveOpKernelInfo(const std::string& model_dir);
Y
Yan Chunwei 已提交
124

M
mapingshuo 已提交
125 126 127 128 129 130 131 132
  // #ifdef LITE_WITH_TRAIN
  //   void Run(const std::vector<framework::Tensor>& tensors) {
  //     FeedVars(tensors);
  //     program_->Run();
  //   }

  //   void FeedVars(const std::vector<framework::Tensor>& tensors);
  // #endif
Y
Yan Chunwei 已提交
133 134 135 136 137 138 139 140

 private:
  Optimizer optimizer_;
  cpp::ProgramDesc program_desc_;
  std::shared_ptr<Scope> scope_;
  const Scope* exec_scope_;
  std::unique_ptr<RuntimeProgram> program_;
  bool program_generated_{false};
141 142
  std::vector<std::string> input_names_;
  std::vector<std::string> output_names_;
D
DannyIsFunny 已提交
143
  std::vector<Place> valid_places_;
Y
Yan Chunwei 已提交
144 145
};

S
sangoly 已提交
146 147 148
class CxxPaddleApiImpl : public lite_api::PaddlePredictor {
 public:
  CxxPaddleApiImpl() {}
D
DannyIsFunny 已提交
149 150
  explicit CxxPaddleApiImpl(const std::shared_ptr<Predictor>& raw_predictor)
      : raw_predictor_(raw_predictor) {}
S
sangoly 已提交
151 152 153 154 155 156 157 158 159 160

  /// Create a new predictor from a config.
  void Init(const lite_api::CxxConfig& config);

  std::unique_ptr<lite_api::Tensor> GetInput(int i) override;

  std::unique_ptr<const lite_api::Tensor> GetOutput(int i) const override;

  void Run() override;

161 162
  std::shared_ptr<lite_api::PaddlePredictor> Clone() override;

S
sangoly 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175
  std::string GetVersion() const override;

  // get inputs names and get outputs names
  std::vector<std::string> GetInputNames() override;
  std::vector<std::string> GetOutputNames() override;

  std::unique_ptr<const lite_api::Tensor> GetTensor(
      const std::string& name) const override;

  // Get InputTebsor by name
  std::unique_ptr<lite_api::Tensor> GetInputByName(
      const std::string& name) override;

176 177 178 179
  void SaveOptimizedModel(
      const std::string& model_dir,
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool record_info = false) override;
S
sangoly 已提交
180 181

 private:
D
DannyIsFunny 已提交
182
  std::shared_ptr<Predictor> raw_predictor_;
183 184
  lite_api::CxxConfig config_;
  std::mutex mutex_;
D
DannyIsFunny 已提交
185
  bool status_is_cloned_{false};
S
sangoly 已提交
186 187
};

Y
Yan Chunwei 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/*
 * An executor for training.
 *
 * Usage:
 *
 * CXXTrainer trainer(...);
 * trainer.RunStartupProgram(...);
 * auto exe = BuildMainProgramExecutor(...);
 *
 * for (auto& epoch : epoches) {
 *   auto* tensor0 = exe.GetInput(...);
 *   // fill data for tensor0
 *   exe.Run();
 * }
#ifdef LITE_WITH_X86
class LITE_API CXXTrainer {
 public:
  CXXTrainer(const std::shared_ptr<lite::Scope>& root_scope,
             const std::vector<Place>& valid_places)
      : scope_(root_scope),
        valid_places_(valid_places),
        main_program_executor_(Predictor(scope_)) {}

  // Build the RuntimeProgram cache for the main program. The cache will run
  // multiple times for the epoches.
  // NOTE Just support to execute the 0-th block currently.
  Predictor& BuildMainProgramExecutor(const framework::proto::ProgramDesc& desc,
                                      int block_id = 0) {
216
    main_program_executor_.Build(desc, valid_places_);
Y
Yan Chunwei 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    return main_program_executor_;
  }

#ifdef LITE_WITH_TRAIN
  Predictor& BuildMainProgramExecutor(framework::ProgramDesc& desc) {  // NOLINT
    return BuildMainProgramExecutor(*desc.Proto());
  }

  void RunStartupProgram(framework::ProgramDesc& desc) {  // NOLINT
    RunStartupProgram(*desc.Proto());
  }
#endif

  // Run the startup program. It just executes once, no cache needed.
  void RunStartupProgram(const framework::proto::ProgramDesc& desc,
                         int block_id = 0) {
    Predictor exe(scope_);
234
    exe.Build(desc,  valid_places_);
Y
Yan Chunwei 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    exe.Run();
  }

 private:
  std::shared_ptr<lite::Scope> scope_;
  std::vector<Place> valid_places_;

  // The training program.
  Predictor main_program_executor_;
};
#endif
*/

}  // namespace lite
}  // namespace paddle