cxx_api.h 8.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <mutex>  //NOLINT
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
#include <string>
#include <utility>
#include <vector>
#include "lite/api/paddle_api.h"
#include "lite/core/op_lite.h"
#include "lite/core/optimizer.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite {

32 33 34 35 36 37 38
static const char TAILORD_OPS_SOURCE_LIST_FILENAME[] =
    ".tailored_ops_source_list";
static const char TAILORD_OPS_LIST_NAME[] = ".tailored_ops_list";
static const char TAILORD_KERNELS_SOURCE_LIST_FILENAME[] =
    ".tailored_kernels_source_list";
static const char TAILORD_KERNELS_LIST_NAME[] = ".tailored_kernels_list";

Y
Yan Chunwei 已提交
39 40 41 42 43 44
/*
 * Predictor for inference, input a model, it will optimize and execute it.
 */
class LITE_API Predictor {
 public:
  // Create an empty predictor.
D
DannyIsFunny 已提交
45 46 47 48
  Predictor() {
    scope_ = std::make_shared<Scope>();
    program_desc_ = std::make_shared<cpp::ProgramDesc>();
  }
Y
Yan Chunwei 已提交
49 50 51
  // Create a predictor with the weight variable scope set.
  explicit Predictor(const std::shared_ptr<lite::Scope>& root_scope)
      : scope_(root_scope) {}
D
DannyIsFunny 已提交
52
  Predictor(const std::shared_ptr<cpp::ProgramDesc>& desc,
D
DannyIsFunny 已提交
53 54 55
            const std::shared_ptr<Scope>& root,
            const std::vector<Place>& valid_places)
      : program_desc_(desc), scope_(root) {
D
DannyIsFunny 已提交
56 57
    Program program(*desc.get(), scope_, valid_places);
    optimizer_ = Optimizer(std::move(program), valid_places);
D
DannyIsFunny 已提交
58 59 60 61 62
    exec_scope_ = optimizer_.exec_scope();
    GenRuntimeProgram();
    valid_places_ = valid_places;
    PrepareFeedFetch();
  }
Y
Yan Chunwei 已提交
63 64

  // Build from a model, with places set for hardware config.
65 66 67 68 69 70
  void Build(
      const lite_api::CxxConfig& config,
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf);

Y
Yan Chunwei 已提交
71 72
  void Build(
      const std::string& model_path,
73 74
      const std::string& model_file_path,
      const std::string& param_file_path,
Y
Yan Chunwei 已提交
75 76
      const std::vector<Place>& valid_places,
      const std::vector<std::string>& passes = {},
77 78
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool memory_from_memory = false);
Y
Yan Chunwei 已提交
79

D
DannyIsFunny 已提交
80
  void Build(const std::shared_ptr<cpp::ProgramDesc>& desc,
Y
Yan Chunwei 已提交
81 82 83
             const std::vector<Place>& valid_places,
             const std::vector<std::string>& passes = {});

D
DannyIsFunny 已提交
84 85 86 87 88 89 90 91 92 93
  std::shared_ptr<Predictor> Clone() const {
    //    CHECK(program_desc_) << "Both program and scope of current predicotr
    //    should  be not be nullptr in Clone mode." ;
    //    CHECK(scope_) << "Both program and scope of current predicotr should
    //    be not be nullptr in Clone mode.";
    auto predictor =
        std::make_shared<Predictor>(program_desc_, scope_, valid_places_);
    return predictor;
  }

Y
Yan Chunwei 已提交
94 95 96 97 98 99 100 101 102 103 104 105
  void GenRuntimeProgram();

  // Run the predictor for a single batch of data.
  void Run() {
    if (!program_generated_) {
      GenRuntimeProgram();
    }
    program_->Run();
  }

  // Get offset-th col of feed inputs.
  lite::Tensor* GetInput(size_t offset);
106 107 108
  // get input by name.
  lite::Tensor* GetInputByName(const std::string& name);
  // get inputnames and get outputnames.
S
sangoly 已提交
109 110
  std::vector<std::string> GetInputNames();
  std::vector<std::string> GetOutputNames();
D
DannyIsFunny 已提交
111 112 113
  // get param names
  std::vector<std::string> GetParamNames();

114
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
115 116 117

  // Get offset-th col of fetch results.
  const lite::Tensor* GetOutput(size_t offset) const;
118
  std::vector<const lite::Tensor*> GetOutputs() const;
Y
Yan Chunwei 已提交
119 120

  const cpp::ProgramDesc& program_desc() const;
D
DannyIsFunny 已提交
121 122 123
  // get a mutable tensor according to its name
  lite::Tensor* GetMutableTensor(const std::string& name);
  // get a const tensor according to its name
Y
Yan Chunwei 已提交
124 125 126 127 128 129
  const lite::Tensor* GetTensor(const std::string& name) const;
  const RuntimeProgram& runtime_program() const;

  // This method is disabled in mobile, for unnecessary dependencies required.
  void SaveModel(
      const std::string& dir,
130 131 132
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool record_info = false);
  void SaveOpKernelInfo(const std::string& model_dir);
Y
Yan Chunwei 已提交
133

M
mapingshuo 已提交
134 135 136 137 138 139 140 141
  // #ifdef LITE_WITH_TRAIN
  //   void Run(const std::vector<framework::Tensor>& tensors) {
  //     FeedVars(tensors);
  //     program_->Run();
  //   }

  //   void FeedVars(const std::vector<framework::Tensor>& tensors);
  // #endif
Y
Yan Chunwei 已提交
142 143 144

 private:
  Optimizer optimizer_;
D
DannyIsFunny 已提交
145
  std::shared_ptr<cpp::ProgramDesc> program_desc_;
Y
Yan Chunwei 已提交
146 147 148 149
  std::shared_ptr<Scope> scope_;
  const Scope* exec_scope_;
  std::unique_ptr<RuntimeProgram> program_;
  bool program_generated_{false};
150 151
  std::vector<std::string> input_names_;
  std::vector<std::string> output_names_;
D
DannyIsFunny 已提交
152
  std::vector<Place> valid_places_;
Y
Yan Chunwei 已提交
153 154
};

S
sangoly 已提交
155 156 157
class CxxPaddleApiImpl : public lite_api::PaddlePredictor {
 public:
  CxxPaddleApiImpl() {}
D
DannyIsFunny 已提交
158 159
  explicit CxxPaddleApiImpl(const std::shared_ptr<Predictor>& raw_predictor)
      : raw_predictor_(raw_predictor) {}
S
sangoly 已提交
160 161 162 163 164 165 166 167 168 169

  /// Create a new predictor from a config.
  void Init(const lite_api::CxxConfig& config);

  std::unique_ptr<lite_api::Tensor> GetInput(int i) override;

  std::unique_ptr<const lite_api::Tensor> GetOutput(int i) const override;

  void Run() override;

170 171
  std::shared_ptr<lite_api::PaddlePredictor> Clone() override;

S
sangoly 已提交
172 173 174 175 176
  std::string GetVersion() const override;

  // get inputs names and get outputs names
  std::vector<std::string> GetInputNames() override;
  std::vector<std::string> GetOutputNames() override;
D
DannyIsFunny 已提交
177 178
  // get param names
  std::vector<std::string> GetParamNames() override;
S
sangoly 已提交
179

D
DannyIsFunny 已提交
180
  // get tensor according to tensor's name
S
sangoly 已提交
181 182
  std::unique_ptr<const lite_api::Tensor> GetTensor(
      const std::string& name) const override;
D
DannyIsFunny 已提交
183 184 185
  // get a mutable tensor according to tensor's name
  std::unique_ptr<lite_api::Tensor> GetMutableTensor(
      const std::string& name) override;
S
sangoly 已提交
186 187 188 189 190

  // Get InputTebsor by name
  std::unique_ptr<lite_api::Tensor> GetInputByName(
      const std::string& name) override;

191 192 193 194
  void SaveOptimizedModel(
      const std::string& model_dir,
      lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf,
      bool record_info = false) override;
S
sangoly 已提交
195 196

 private:
D
DannyIsFunny 已提交
197
  std::shared_ptr<Predictor> raw_predictor_;
198 199
  lite_api::CxxConfig config_;
  std::mutex mutex_;
D
DannyIsFunny 已提交
200
  bool status_is_cloned_{false};
S
sangoly 已提交
201 202
};

Y
Yan Chunwei 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/*
 * An executor for training.
 *
 * Usage:
 *
 * CXXTrainer trainer(...);
 * trainer.RunStartupProgram(...);
 * auto exe = BuildMainProgramExecutor(...);
 *
 * for (auto& epoch : epoches) {
 *   auto* tensor0 = exe.GetInput(...);
 *   // fill data for tensor0
 *   exe.Run();
 * }
#ifdef LITE_WITH_X86
class LITE_API CXXTrainer {
 public:
  CXXTrainer(const std::shared_ptr<lite::Scope>& root_scope,
             const std::vector<Place>& valid_places)
      : scope_(root_scope),
        valid_places_(valid_places),
        main_program_executor_(Predictor(scope_)) {}

  // Build the RuntimeProgram cache for the main program. The cache will run
  // multiple times for the epoches.
  // NOTE Just support to execute the 0-th block currently.
  Predictor& BuildMainProgramExecutor(const framework::proto::ProgramDesc& desc,
                                      int block_id = 0) {
231
    main_program_executor_.Build(desc, valid_places_);
Y
Yan Chunwei 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    return main_program_executor_;
  }

#ifdef LITE_WITH_TRAIN
  Predictor& BuildMainProgramExecutor(framework::ProgramDesc& desc) {  // NOLINT
    return BuildMainProgramExecutor(*desc.Proto());
  }

  void RunStartupProgram(framework::ProgramDesc& desc) {  // NOLINT
    RunStartupProgram(*desc.Proto());
  }
#endif

  // Run the startup program. It just executes once, no cache needed.
  void RunStartupProgram(const framework::proto::ProgramDesc& desc,
                         int block_id = 0) {
    Predictor exe(scope_);
249
    exe.Build(desc,  valid_places_);
Y
Yan Chunwei 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    exe.Run();
  }

 private:
  std::shared_ptr<lite::Scope> scope_;
  std::vector<Place> valid_places_;

  // The training program.
  Predictor main_program_executor_;
};
#endif
*/

}  // namespace lite
}  // namespace paddle