layout_image_compute.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/api/paddle_place.h"
18
#include "lite/backends/opencl/cl_half.h"
19 20 21 22 23 24 25 26 27 28 29 30 31
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/target_wrapper.h"
#include "lite/core/type_system.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/cp_logging.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

32 33 34 35 36
// [NCHW] -> [ImageDefault]
class LayoutComputeBufferChwToImageDefault
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kAny),
                        DATALAYOUT(kImageDefault)> {
37 38 39 40
 public:
  using param_t = operators::LayoutParam;

  void PrepareForRun() override {
41 42 43 44
    auto& param = Param<param_t>();
    if (param.process_type == 1) {
      kernel_func_name_ = "buffer_to_image2d_with_pre255";
    }
45
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
46 47
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
48
        kernel_func_name_, "image/layout_kernel.cl", build_options_);
49 50 51 52
  }

  void Run() override {
    auto& param = Param<param_t>();
53 54 55 56 57 58
    const cl::Buffer* x_data;
    if (param.process_type == 1) {
      x_data = param.x->data<uint8_t, cl::Buffer>();
    } else {
      x_data = param.x->data<float, cl::Buffer>();
    }
59 60
    auto x_dims = param.x->dims();
    auto image_shape = InitImageDimInfoWith(x_dims);
61
    auto* y_data = param.y->mutable_data<half_t, cl::Image2D>(
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        image_shape["width"], image_shape["height"]);
    auto y_dims = param.y->dims();

    // out info
    std::vector<size_t> new_dims = {1, 1, 1, 1};
    for (int tidx = 0; tidx < x_dims.size(); ++tidx) {
      new_dims[4 - x_dims.size() + tidx] = x_dims[tidx];
    }
    const int out_C = new_dims[1];
    const int out_H = new_dims[2];
    const int out_W = new_dims[3];
    const int Stride2 = out_C * out_H * out_W;
    const int Stride1 = out_H * out_W;
    const int Stride0 = out_W;

77
#ifndef LITE_SHUTDOWN_LOG
78 79 80 81
    VLOG(2) << "param.process_type:" << param.process_type;
    VLOG(2) << "x_dims:" << x_dims;
    VLOG(2) << "param.x->memory_size():" << param.x->memory_size();
    VLOG(2) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " "
82
            << new_dims[1] << " " << new_dims[2] << " " << new_dims[3];
83 84 85 86 87 88 89 90 91 92
    VLOG(2) << "y_dims:" << y_dims;
    VLOG(2) << "param.y->memory_size():" << param.y->memory_size();
    VLOG(2) << "y image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(2) << "out_C:" << out_C;
    VLOG(2) << "out_H:" << out_H;
    VLOG(2) << "out_W:" << out_W;
    VLOG(2) << "Stride2:" << Stride2;
    VLOG(2) << "Stride1:" << Stride1;
    VLOG(2) << "Stride0:" << Stride0;
93
#endif
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_data);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_data);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_H));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_W));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_C));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride0));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride1));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride2));
    CL_CHECK_FATAL(status);

119
    VLOG(2) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3]
120 121 122 123 124 125 126 127 128 129 130 131 132
            << " " << (new_dims[0] * new_dims[2]);
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>((new_dims[1] + 3) / 4),
                    static_cast<cl::size_type>(new_dims[3]),
                    static_cast<cl::size_type>(new_dims[0] * new_dims[2])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
133
    context.cl_wait_list()->emplace(y_data, event_);
134 135 136
  }

  std::string doc() const override {
137
    return "Trans Layout from cl::Buffer(NCHW) to "
138
           "cl::Image2D(ImageDefault/RGBA), Float ---> FP16";
139 140 141 142
  }

 private:
  std::string kernel_func_name_{"buffer_to_image2d"};
143
  std::string build_options_{"-DCL_DTYPE_float"};
144 145 146
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

147 148 149
// [ImageDefault] -> [NCHW]
class LayoutComputeImageDefaultToBufferChw
    : public KernelLite<TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW)> {
150 151 152 153
 public:
  using param_t = operators::LayoutParam;

  void PrepareForRun() override {
154 155 156 157
    auto& param = Param<param_t>();
    if (param.process_type == 1) {
      kernel_func_name_ = "image2d_to_buffer_with_post255";
    }
158
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
159 160
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
161
        kernel_func_name_, "image/layout_kernel.cl", build_options_);
162 163 164 165
  }

  void Run() override {
    auto& param = Param<param_t>();
166 167 168 169 170 171
    const cl::Buffer* y_data;
    if (param.process_type == 1) {
      y_data = param.y->mutable_data<uint8_t, cl::Buffer>(TARGET(kOpenCL));
    } else {
      y_data = param.y->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
    }
172
    auto* x_data = param.x->data<half_t, cl::Image2D>();
173
    auto x_dims = param.x->dims();
174
    auto y_dims = param.y->dims();
175
    auto x_image_shape = InitImageDimInfoWith(x_dims);
176 177

    std::vector<size_t> new_dims = {1, 1, 1, 1};
178 179
    for (int j = 0; j < x_dims.size(); ++j) {
      new_dims[4 - x_dims.size() + j] = x_dims[j];
180 181
    }

182
#ifndef LITE_SHUTDOWN_LOG
183 184 185 186
    VLOG(2) << "param.process_type:" << param.process_type;
    VLOG(2) << "x_dims:" << x_dims;
    VLOG(2) << "param.x->memory_size():" << param.x->memory_size();
    VLOG(2) << "x_image_shape(w,h):" << x_image_shape["width"] << " "
187
            << x_image_shape["height"];
188
    VLOG(2) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " "
189
            << new_dims[1] << " " << new_dims[2] << " " << new_dims[3];
190 191
    VLOG(2) << "y_dims:" << y_dims;
    VLOG(2) << "param.y->memory_size():" << param.y->memory_size();
192
#endif
193

194 195 196 197 198 199
    size_t C = new_dims[1];
    size_t in_height = new_dims[2];
    size_t in_width = new_dims[3];
    int size_ch = in_height * in_width;
    int size_block = size_ch * 4;
    int size_batch = size_ch * C;
200 201 202 203 204 205 206 207 208 209

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_data);
    CL_CHECK_FATAL(status);
210
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_width));
211
    CL_CHECK_FATAL(status);
212
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_height));
213
    CL_CHECK_FATAL(status);
214
    status = kernel.setArg(++arg_idx, *y_data);
215
    CL_CHECK_FATAL(status);
216
    status = kernel.setArg(++arg_idx, static_cast<const int>(size_ch));
217
    CL_CHECK_FATAL(status);
218
    status = kernel.setArg(++arg_idx, static_cast<const int>(size_block));
219
    CL_CHECK_FATAL(status);
220
    status = kernel.setArg(++arg_idx, static_cast<const int>(size_batch));
221
    CL_CHECK_FATAL(status);
222
    status = kernel.setArg(++arg_idx, static_cast<const int>(C));
223
    CL_CHECK_FATAL(status);
224
#ifndef LITE_SHUTDOWN_LOG
225
    VLOG(2) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3]
226
            << " " << (new_dims[0] * new_dims[2]);
227
#endif
228
    auto global_work_size =
229 230 231
        cl::NDRange{static_cast<cl::size_type>((new_dims[1] + 3) / 4),
                    static_cast<cl::size_type>(new_dims[3]),
                    static_cast<cl::size_type>(new_dims[0] * new_dims[2])};
232 233 234 235 236 237 238 239
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
240
    context.cl_wait_list()->emplace(y_data, event_);
241 242 243
  }

  std::string doc() const override {
244
    return "Trans Layout from cl::Image2D(ImageDefault/RGBA) to "
245
           "cl::Buffer(NCHW), FP16 ---> Float";
246 247 248
  }

 private:
249 250
  std::string kernel_func_name_{"image2d_to_buffer"};
  std::string build_options_{"-DCL_DTYPE_float"};
251 252 253
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

254 255 256 257 258
// [NCHW] -> [ImageDW]
class LayoutComputeBufferChwToImage2DNw
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFloat),
                        DATALAYOUT(kImageNW)> {
259 260 261 262 263 264 265 266 267 268 269
 public:
  using param_t = operators::LayoutParam;

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "buffer/layout_kernel.cl", build_options_);
  }

  void Run() override {
    auto& param = Param<param_t>();
270
    auto* x_data = param.x->data<float, cl::Buffer>();
271 272
    auto x_dims = param.x->dims();

273 274 275 276 277 278 279 280 281
    CHECK(x_dims.size() == 4) << " Tensor dim is not 4.";
    size_t image_width = x_dims[3] * ((x_dims[0] + 3) / 4);
    size_t image_height = x_dims[1] * x_dims[2];

    auto* y_data =
        param.y->mutable_data<float, cl::Image2D>(image_width, image_height);
    auto y_dims = param.y->dims();

    // out info
282
    std::vector<size_t> new_dims = {1, 1, 1, 1};
283 284
    for (int tidx = 0; tidx < x_dims.size(); ++tidx) {
      new_dims[4 - x_dims.size() + tidx] = x_dims[tidx];
285 286
    }

287 288 289 290
    const int out_N = new_dims[0];
    const int out_C = new_dims[1];
    const int out_H = new_dims[2];
    const int out_W = new_dims[3];
291

292 293 294
    const int Stride2 = out_C * out_H * out_W;
    const int Stride1 = out_H * out_W;
    const int Stride0 = out_W;
295 296 297 298 299 300 301 302 303 304

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_data);
    CL_CHECK_FATAL(status);
305
    status = kernel.setArg(++arg_idx, *y_data);
306
    CL_CHECK_FATAL(status);
307
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_H));
308
    CL_CHECK_FATAL(status);
309
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_W));
310
    CL_CHECK_FATAL(status);
311
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_N));
312
    CL_CHECK_FATAL(status);
313
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride0));
314
    CL_CHECK_FATAL(status);
315
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride1));
316
    CL_CHECK_FATAL(status);
317
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride2));
318
    CL_CHECK_FATAL(status);
319

320
    VLOG(2) << "gws:[3D]" << ((out_N + 3) / 4) << " " << out_W << " "
321
            << (out_C * out_H);
322
    auto global_work_size =
323 324 325
        cl::NDRange{static_cast<cl::size_type>((out_N + 3) / 4),  // N blocks
                    static_cast<cl::size_type>(out_W),            // w
                    static_cast<cl::size_type>(out_C * out_H)};   // ch
326 327 328 329 330 331 332 333
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
334
    context.cl_wait_list()->emplace(y_data, event_);
335 336 337
  }

  std::string doc() const override {
338
    return "Trans Layout from cl::Buffer(NCHW) to cl::Image2D(ImageDW/CLNW)";
339 340 341
  }

 private:
342 343
  std::string kernel_func_name_{"buffer_to_image2d_nw"};
  std::string build_options_{"-DCL_DTYPE_float "};
344 345 346 347 348 349 350 351
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

352
// [NCHW] -> [ImageDefault]
353 354 355
REGISTER_LITE_KERNEL(
    layout,
    kOpenCL,
356
    kAny,
357 358 359
    kImageDefault,
    paddle::lite::kernels::opencl::LayoutComputeBufferChwToImageDefault,
    NCHW_to_ImageDefault)
360 361
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
362
                                      PRECISION(kAny),
363 364 365
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
366
                                       PRECISION(kAny),
367
                                       DATALAYOUT(kImageDefault))})
368 369
    .Finalize();

370
// [ImageDefault] -> [NCHW]
371 372 373
REGISTER_LITE_KERNEL(
    layout,
    kOpenCL,
374
    kAny,
375
    kNCHW,
376 377
    paddle::lite::kernels::opencl::LayoutComputeImageDefaultToBufferChw,
    ImageDefault_to_NCHW)
378 379
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
380
                                      PRECISION(kAny),
381
                                      DATALAYOUT(kImageDefault))})
382 383
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
384
                                       PRECISION(kAny),
385 386
                                       DATALAYOUT(kNCHW))})
    .Finalize();