Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
0b6210b7
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b6210b7
编写于
2月 12, 2020
作者:
Y
yiicy
提交者:
GitHub
2月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[OPENCL] add sigmoid image2d kernel and ut, test=develop (#2837)
[OPENCL] add sigmoid image2d kernel and ut
上级
3dab09ef
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
762 addition
and
9 deletion
+762
-9
lite/backends/opencl/cl_kernel/buffer/sigmoid_kernel.cl
lite/backends/opencl/cl_kernel/buffer/sigmoid_kernel.cl
+22
-0
lite/backends/opencl/cl_kernel/image/sigmoid_kernel.cl
lite/backends/opencl/cl_kernel/image/sigmoid_kernel.cl
+30
-0
lite/kernels/opencl/CMakeLists.txt
lite/kernels/opencl/CMakeLists.txt
+5
-0
lite/kernels/opencl/layout_compute.cc
lite/kernels/opencl/layout_compute.cc
+1
-1
lite/kernels/opencl/layout_compute_test.cc
lite/kernels/opencl/layout_compute_test.cc
+7
-8
lite/kernels/opencl/sigmoid_compute.cc
lite/kernels/opencl/sigmoid_compute.cc
+272
-0
lite/kernels/opencl/sigmoid_compute_test.cc
lite/kernels/opencl/sigmoid_compute_test.cc
+425
-0
未找到文件。
lite/backends/opencl/cl_kernel/buffer/sigmoid_kernel.cl
0 → 100644
浏览文件 @
0b6210b7
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
<cl_common.h>
__kernel
void
sigmoid
(
__global
const
CL_DTYPE*
x_data,
const
int
count,
__global
CL_DTYPE*
out_data
)
{
const
int
index
=
get_global_id
(
0
)
;
if
(
index
<
count
)
{
out_data[index]
=
1
/
(
1
+
exp
(
-x_data[index]
))
;
}
}
lite/backends/opencl/cl_kernel/image/sigmoid_kernel.cl
0 → 100644
浏览文件 @
0b6210b7
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
<cl_common.h>
__kernel
void
sigmoid
(
__read_only
image2d_t
input,
__write_only
image2d_t
output
)
{
const
int
x
=
get_global_id
(
0
)
; // image_width
const
int
y
=
get_global_id
(
1
)
; // image_height
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
CL_DTYPE4
in
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
input,
sampler,
(
int2
)(
x,
y
))
;
CL_DTYPE4
out
=
1
/
(
1
+
exp
(
-in
))
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output,
(
int2
)(
x,
y
)
,
out
)
;
}
lite/kernels/opencl/CMakeLists.txt
浏览文件 @
0b6210b7
...
...
@@ -14,6 +14,7 @@ add_kernel(fusion_elementwise_add_activation_opencl
add_kernel
(
pool_opencl OPENCL basic SRCS pool_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
io_copy_compute_opencl OPENCL basic SRCS io_copy_compute.cc DEPS
${
tensor_lite
}
${
cl_kernel_deps
}
)
add_kernel
(
relu_opencl OPENCL basic SRCS relu_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
sigmoid_opencl OPENCL basic SRCS sigmoid_compute.cc DEPS
${
cl_kernel_deps
}
)
add_kernel
(
depthwise_conv2d_opencl OPENCL basic SRCS depthwise_conv2d_compute.cc DEPS
${
cl_kernel_deps
}
)
#add_kernel(conv2d_1x1_opencl OPENCL basic SRCS conv2d_1x1_compute.cc DEPS ${cl_kernel_deps})
add_kernel
(
reshape_opencl OPENCL basic SRCS reshape_compute.cc DEPS
${
cl_kernel_deps
}
)
...
...
@@ -51,6 +52,10 @@ lite_cc_test(test_relu_opencl SRCS relu_compute_test.cc
DEPS relu_opencl layout_opencl op_registry program context
ARGS --cl_path=
${
CMAKE_SOURCE_DIR
}
/lite/backends/opencl
)
lite_cc_test
(
test_sigmoid_opencl SRCS sigmoid_compute_test.cc
DEPS sigmoid_opencl layout_opencl op_registry program context
ARGS --cl_path=
${
CMAKE_SOURCE_DIR
}
/lite/backends/opencl
)
lite_cc_test
(
test_depthwise_conv2d_opencl SRCS depthwise_conv2d_compute_test.cc
DEPS depthwise_conv2d_opencl op_registry program context
ARGS --cl_path=
${
CMAKE_SOURCE_DIR
}
/lite/backends/opencl
)
...
...
lite/kernels/opencl/layout_compute.cc
浏览文件 @
0b6210b7
...
...
@@ -185,7 +185,7 @@ class LayoutComputeImageDefaultToBufferChw
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
static_cast
<
const
int
>
(
size_ch
));
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
static_cast
<
const
int
>
(
size_
ch
));
status
=
kernel
.
setArg
(
++
arg_idx
,
static_cast
<
const
int
>
(
size_
block
));
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
static_cast
<
const
int
>
(
size_batch
));
CL_CHECK_FATAL
(
status
);
...
...
lite/kernels/opencl/layout_compute_test.cc
浏览文件 @
0b6210b7
...
...
@@ -34,10 +34,10 @@ TEST(layout_ImageDefault, compute) {
for
(
int
h
=
1
;
h
<=
100
;
h
+=
13
)
{
for
(
int
w
=
1
;
w
<=
100
;
w
+=
17
)
{
#else
const
int
n
=
1
;
const
int
c
=
1
;
const
int
h
=
1
;
const
int
w
=
100
;
const
int
n
=
2
;
const
int
c
=
9
;
const
int
h
=
20
;
const
int
w
=
5
;
#endif // LOOP_TEST
LOG
(
INFO
)
<<
"======== input shape[n,c,h,w]:"
<<
n
<<
" "
<<
c
<<
" "
...
...
@@ -86,8 +86,7 @@ TEST(layout_ImageDefault, compute) {
auto
*
mapped_y
=
static_cast
<
float
*>
(
TargetWrapperCL
::
Map
(
y_data
,
0
,
sizeof
(
float
)
*
x_dim
.
production
()));
for
(
int
i
=
0
;
i
<
x_dim
.
production
();
++
i
)
{
mapped_x
[
i
]
=
static_cast
<
int
>
(
i
);
mapped_y
[
i
]
=
static_cast
<
int
>
(
0
);
mapped_x
[
i
]
=
static_cast
<
float
>
(
i
);
}
// set context and kernel args
...
...
@@ -116,7 +115,7 @@ TEST(layout_ImageDefault, compute) {
// result
#ifdef PRINT_RESULT
LOG
(
INFO
)
<<
"---- print result ----"
;
for
(
int
eidx
=
0
;
i
<
x_dim
.
production
();
++
eidx
)
{
for
(
int
eidx
=
0
;
eidx
<
x_dim
.
production
();
++
eidx
)
{
std
::
cout
<<
mapped_x
[
eidx
]
<<
" -> "
<<
mapped_y
[
eidx
]
<<
std
::
endl
;
}
...
...
@@ -251,7 +250,7 @@ TEST(layout_ImageNW, compute) {
// result
#ifdef PRINT_RESULT
LOG
(
INFO
)
<<
"---- print result ----"
;
for
(
int
eidx
=
0
;
i
<
x_dim
.
production
();
++
eidx
)
{
for
(
int
eidx
=
0
;
eidx
<
x_dim
.
production
();
++
eidx
)
{
std
::
cout
<<
mapped_x
[
eidx
]
<<
" -> "
<<
mapped_y
[
eidx
]
<<
std
::
endl
;
}
...
...
lite/kernels/opencl/sigmoid_compute.cc
0 → 100644
浏览文件 @
0b6210b7
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
opencl
{
class
SigmoidCompute
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
)
>
{
public:
using
param_t
=
operators
::
ActivationParam
;
std
::
string
doc
()
const
override
{
return
"Sigmoid using cl::Buffer, kFloat"
;
}
void
PrepareForRun
()
override
{
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"buffer/sigmoid_kernel.cl"
,
build_options_
);
}
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
const
auto
&
x_dims
=
param
.
X
->
dims
();
size_t
count
=
x_dims
.
production
();
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
auto
*
x_buf
=
param
.
X
->
data
<
float
,
cl
::
Buffer
>
();
auto
*
out_buf
=
param
.
Out
->
mutable_data
<
float
,
cl
::
Buffer
>
(
TARGET
(
kOpenCL
));
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
VLOG
(
4
)
<<
TargetToStr
(
param
.
X
->
target
());
VLOG
(
4
)
<<
TargetToStr
(
param
.
Out
->
target
());
int
arg_idx
=
0
;
cl_int
status
=
kernel
.
setArg
(
arg_idx
,
*
x_buf
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
(
const
int
)
count
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
out_buf
);
CL_CHECK_FATAL
(
status
);
auto
global_work_size
=
cl
::
NDRange
{
count
};
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_buf
,
event_
);
}
private:
std
::
string
kernel_func_name_
{
"sigmoid"
};
std
::
string
build_options_
{
"-DCL_DTYPE_float -DSIGMOID"
};
std
::
shared_ptr
<
cl
::
Event
>
event_
{
new
cl
::
Event
};
};
class
SigmoidComputeFloatImageDefault
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kImageDefault
)
>
{
public:
using
param_t
=
operators
::
ActivationParam
;
std
::
string
doc
()
const
override
{
return
"Sigmoid using cl::Image2D(ImageDefault/RGBA), kFloat"
;
}
void
PrepareForRun
()
override
{
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"image/sigmoid_kernel.cl"
,
build_options_
);
}
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
const
auto
&
x_dims
=
param
.
X
->
dims
();
auto
*
x_buf
=
param
.
X
->
data
<
float
,
cl
::
Image2D
>
();
auto
image_shape
=
InitImageDimInfoWith
(
x_dims
);
auto
*
out_buf
=
param
.
Out
->
mutable_data
<
float
,
cl
::
Image2D
>
(
image_shape
[
"width"
],
image_shape
[
"height"
]);
const
auto
&
y_dims
=
param
.
Out
->
dims
();
// useless: check dim only
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
int
arg_idx
=
0
;
cl_int
status
=
kernel
.
setArg
(
arg_idx
,
*
x_buf
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
out_buf
);
CL_CHECK_FATAL
(
status
);
VLOG
(
4
)
<<
TargetToStr
(
param
.
X
->
target
());
VLOG
(
4
)
<<
TargetToStr
(
param
.
Out
->
target
());
VLOG
(
4
)
<<
"image_shape(w,h):"
<<
image_shape
[
"width"
]
<<
" "
<<
image_shape
[
"height"
];
VLOG
(
4
)
<<
"x_dims["
<<
x_dims
.
size
()
<<
"D]:"
<<
x_dims
[
0
]
<<
" "
<<
x_dims
[
1
]
<<
" "
<<
x_dims
[
2
]
<<
" "
<<
x_dims
[
3
];
VLOG
(
4
)
<<
"y_dims["
<<
y_dims
.
size
()
<<
"D]:"
<<
y_dims
[
0
]
<<
" "
<<
y_dims
[
1
]
<<
" "
<<
y_dims
[
2
]
<<
" "
<<
y_dims
[
3
];
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
image_shape
[
"width"
]),
static_cast
<
cl
::
size_type
>
(
image_shape
[
"height"
])};
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
// TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
// context.cl_wait_list()->emplace(out_buf, event_);
context
.
cl_context
()
->
GetCommandQueue
().
finish
();
}
private:
std
::
string
kernel_func_name_
{
"sigmoid"
};
std
::
string
build_options_
{
"-DCL_DTYPE_float -DSIGMOID"
};
std
::
shared_ptr
<
cl
::
Event
>
event_
{
new
cl
::
Event
};
};
class
SigmoidComputeFP16ImageDefault
:
public
KernelLite
<
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
)
>
{
public:
using
param_t
=
operators
::
ActivationParam
;
std
::
string
doc
()
const
override
{
return
"Sigmoid using cl::Image2D(ImageDefault/RGBA), kFP16"
;
}
void
PrepareForRun
()
override
{
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
context
.
cl_context
()
->
AddKernel
(
kernel_func_name_
,
"image/sigmoid_kernel.cl"
,
build_options_
);
}
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
const
auto
&
x_dims
=
param
.
X
->
dims
();
auto
*
x_buf
=
param
.
X
->
data
<
int16_t
,
cl
::
Image2D
>
();
// use int16_t represents half float
auto
image_shape
=
InitImageDimInfoWith
(
x_dims
);
auto
*
out_buf
=
param
.
Out
->
mutable_data
<
int16_t
,
cl
::
Image2D
>
(
// use int16_t
// represents half float
image_shape
[
"width"
],
image_shape
[
"height"
]);
const
auto
&
y_dims
=
param
.
Out
->
dims
();
// useless: check dim only
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_name_
<<
build_options_
;
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
int
arg_idx
=
0
;
cl_int
status
=
kernel
.
setArg
(
arg_idx
,
*
x_buf
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
out_buf
);
CL_CHECK_FATAL
(
status
);
VLOG
(
4
)
<<
TargetToStr
(
param
.
X
->
target
());
VLOG
(
4
)
<<
TargetToStr
(
param
.
Out
->
target
());
VLOG
(
4
)
<<
"image_shape(w,h):"
<<
image_shape
[
"width"
]
<<
" "
<<
image_shape
[
"height"
];
VLOG
(
4
)
<<
"x_dims["
<<
x_dims
.
size
()
<<
"D]:"
<<
x_dims
[
0
]
<<
" "
<<
x_dims
[
1
]
<<
" "
<<
x_dims
[
2
]
<<
" "
<<
x_dims
[
3
];
VLOG
(
4
)
<<
"y_dims["
<<
y_dims
.
size
()
<<
"D]:"
<<
y_dims
[
0
]
<<
" "
<<
y_dims
[
1
]
<<
" "
<<
y_dims
[
2
]
<<
" "
<<
y_dims
[
3
];
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
cl
::
size_type
>
(
image_shape
[
"width"
]),
static_cast
<
cl
::
size_type
>
(
image_shape
[
"height"
])};
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
// TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list`
// context.cl_wait_list()->emplace(out_buf, event_);
context
.
cl_context
()
->
GetCommandQueue
().
finish
();
}
private:
std
::
string
kernel_func_name_
{
"sigmoid"
};
std
::
string
build_options_
{
"-DCL_DTYPE_half -DSIGMOID"
};
std
::
shared_ptr
<
cl
::
Event
>
event_
{
new
cl
::
Event
};
};
}
// namespace opencl
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
sigmoid
,
kOpenCL
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
opencl
::
SigmoidCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
sigmoid
,
kOpenCL
,
kFloat
,
kImageDefault
,
paddle
::
lite
::
kernels
::
opencl
::
SigmoidComputeFloatImageDefault
,
ImageDefault
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kImageDefault
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kImageDefault
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
sigmoid
,
kOpenCL
,
kFP16
,
kImageDefault
,
paddle
::
lite
::
kernels
::
opencl
::
SigmoidComputeFP16ImageDefault
,
ImageDefault
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
))})
.
Finalize
();
lite/kernels/opencl/sigmoid_compute_test.cc
0 → 100644
浏览文件 @
0b6210b7
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <math.h>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/image_helper.h"
namespace
paddle
{
namespace
lite
{
template
<
typename
dtype
>
void
sigmoid_compute_ref
(
const
dtype
*
x_data
,
const
DDim
&
x_dim
,
dtype
*
out_data
)
{
for
(
int
i
=
0
;
i
<
x_dim
.
production
();
++
i
)
{
out_data
[
i
]
=
1
/
(
1
+
expf
(
-
x_data
[
i
]));
}
}
#if 1 // sigmoid_buffer
TEST
(
opencl_sigmoid_buffer
,
compute
)
{
// prepare data
const
DDim
x_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
3
,
6
,
10
,
10
});
lite
::
Tensor
x
,
out
;
x
.
Resize
(
x_dim
);
out
.
Resize
(
x_dim
);
auto
*
x_data
=
x
.
mutable_data
<
float
,
cl
::
Buffer
>
(
TARGET
(
kOpenCL
));
std
::
default_random_engine
engine
;
std
::
uniform_real_distribution
<
float
>
dist
(
-
10
,
10
);
auto
*
mapped_x
=
static_cast
<
float
*>
(
TargetWrapperCL
::
Map
(
x_data
,
0
,
sizeof
(
float
)
*
x_dim
.
production
()));
for
(
int
i
=
0
;
i
<
x_dim
.
production
();
i
++
)
{
mapped_x
[
i
]
=
dist
(
engine
);
}
// set param and kernel, then run
operators
::
ActivationParam
param
;
param
.
X
=
&
x
;
param
.
Out
=
&
out
;
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
auto
kernels
=
KernelRegistry
::
Global
().
Create
(
"sigmoid"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
));
ASSERT_FALSE
(
kernels
.
empty
());
auto
kernel
=
std
::
move
(
kernels
.
front
());
kernel
->
SetParam
(
param
);
std
::
unique_ptr
<
KernelContext
>
sigmoid_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
sigmoid_context
->
As
<
OpenCLContext
>
()));
kernel
->
SetContext
(
std
::
move
(
sigmoid_context
));
kernel
->
Launch
();
auto
*
wait_list
=
context
->
As
<
OpenCLContext
>
().
cl_wait_list
();
auto
*
out_ptr
=
param
.
Out
->
data
<
float
,
cl
::
Buffer
>
();
auto
it
=
wait_list
->
find
(
out_ptr
);
if
(
it
!=
wait_list
->
end
())
{
VLOG
(
4
)
<<
"--- Find the sync event for the target cl tensor. ---"
;
auto
&
event
=
*
(
it
->
second
);
event
.
wait
();
}
else
{
LOG
(
FATAL
)
<<
"Could not find the sync event for the target cl tensor."
;
}
// run compute ref and check
std
::
unique_ptr
<
float
[]
>
out_ref
(
new
float
[
x_dim
.
production
()]);
sigmoid_compute_ref
<
float
>
(
mapped_x
,
x_dim
,
out_ref
.
get
());
auto
*
out_data
=
out
.
mutable_data
<
float
,
cl
::
Buffer
>
();
auto
*
mapped_out
=
static_cast
<
float
*>
(
TargetWrapperCL
::
Map
(
out_data
,
0
,
sizeof
(
float
)
*
x_dim
.
production
()));
for
(
int
i
=
0
;
i
<
x_dim
.
production
();
i
++
)
{
EXPECT_NEAR
(
mapped_out
[
i
],
out_ref
[
i
],
1e-6
);
}
TargetWrapperCL
::
Unmap
(
out_data
,
mapped_out
);
TargetWrapperCL
::
Unmap
(
x_data
,
mapped_x
);
}
#endif // sigmoid_buffer
#define LOOP_TEST
// #define PRINT_RESULT
TEST
(
sigmoid_image2d_fp32
,
compute
)
{
LOG
(
INFO
)
<<
"main steps of test: host -> layout(buf2img) -> sigmoid(img) -> "
"layout(img2buf) "
"-> host"
;
#ifdef LOOP_TEST
for
(
int
n
=
1
;
n
<=
9
;
n
+=
3
)
{
for
(
auto
c
:
{
1
,
3
,
9
})
{
for
(
int
h
=
12
;
h
<=
100
;
h
+=
13
)
{
for
(
int
w
=
12
;
w
<=
100
;
w
+=
25
)
{
#else
const
int
n
=
3
;
const
int
c
=
9
;
const
int
h
=
51
;
const
int
w
=
11
;
#endif // LOOP_TEST
LOG
(
INFO
)
<<
"======== input shape[n,c,h,w]:"
<<
n
<<
" "
<<
c
<<
" "
<<
h
<<
" "
<<
w
<<
" ========"
;
// set layout kernels
auto
buf_to_img_kernels
=
KernelRegistry
::
Global
().
Create
(
"layout"
,
TARGET
(
kOpenCL
),
PRECISION
(
kAny
),
DATALAYOUT
(
kImageDefault
));
auto
img_to_buf_kernels
=
KernelRegistry
::
Global
().
Create
(
"layout"
,
TARGET
(
kOpenCL
),
PRECISION
(
kAny
),
DATALAYOUT
(
kNCHW
));
auto
sigmoid_img_kernels
=
KernelRegistry
::
Global
().
Create
(
"sigmoid"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
buf_to_img_kernels
.
empty
());
ASSERT_FALSE
(
buf_to_img_kernels
.
empty
());
ASSERT_FALSE
(
sigmoid_img_kernels
.
empty
());
auto
buf_to_img_kernel
=
std
::
move
(
buf_to_img_kernels
.
front
());
auto
img_to_buf_kernel
=
std
::
move
(
img_to_buf_kernels
.
front
());
auto
sigmoid_img_kernel
=
std
::
move
(
sigmoid_img_kernels
.
front
());
LOG
(
INFO
)
<<
"get 1st kernel: "
<<
buf_to_img_kernel
->
doc
();
LOG
(
INFO
)
<<
"get 2nd kernel: "
<<
img_to_buf_kernel
->
doc
();
LOG
(
INFO
)
<<
"get 3rd kernel: "
<<
sigmoid_img_kernel
->
doc
();
// set tensors about op param
LOG
(
INFO
)
<<
"set tensors about op param"
;
// layout(buf->img): x -> sigmoid_in
// sigmoid(img): sigmoid_in -> sigmoid_out
// layout(img->buf): sigmoid_out -> y
lite
::
Tensor
x
,
y
,
sigmoid_in
,
sigmoid_out
,
y_ref
;
operators
::
LayoutParam
BufferToImageParam
;
operators
::
LayoutParam
ImageToBufferParam
;
BufferToImageParam
.
x
=
&
x
;
BufferToImageParam
.
y
=
&
sigmoid_in
;
ImageToBufferParam
.
x
=
&
sigmoid_out
;
ImageToBufferParam
.
y
=
&
y
;
operators
::
ActivationParam
SigmoidParam
;
SigmoidParam
.
X
=
&
sigmoid_in
;
SigmoidParam
.
Out
=
&
sigmoid_out
;
const
DDim
x_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
n
,
c
,
h
,
w
});
x
.
Resize
(
x_dim
);
y
.
Resize
(
x_dim
);
sigmoid_in
.
Resize
(
x_dim
);
sigmoid_out
.
Resize
(
x_dim
);
y_ref
.
Resize
(
x_dim
);
auto
sigmoid_image2d_shape
=
paddle
::
lite
::
kernels
::
opencl
::
InitImageDimInfoWith
(
x_dim
);
// initialize tensors
LOG
(
INFO
)
<<
"initialize tensors"
;
auto
*
x_data
=
x
.
mutable_data
<
float
,
cl
::
Buffer
>
(
TARGET
(
kOpenCL
));
auto
*
y_data
=
y
.
mutable_data
<
float
,
cl
::
Buffer
>
(
TARGET
(
kOpenCL
));
auto
*
y_data_ref
=
y_ref
.
mutable_data
<
float
>
(
TARGET
(
kARM
));
auto
*
mapped_x
=
static_cast
<
float
*>
(
TargetWrapperCL
::
Map
(
x_data
,
0
,
sizeof
(
float
)
*
x_dim
.
production
()));
auto
*
mapped_y
=
static_cast
<
float
*>
(
TargetWrapperCL
::
Map
(
y_data
,
0
,
sizeof
(
float
)
*
x_dim
.
production
()));
std
::
default_random_engine
engine
;
std
::
uniform_real_distribution
<
float
>
dist
(
-
1
,
1
);
for
(
int
i
=
0
;
i
<
x_dim
.
production
();
++
i
)
{
mapped_x
[
i
]
=
static_cast
<
float
>
(
dist
(
engine
));
}
auto
*
sigmoid_in_data
=
sigmoid_in
.
mutable_data
<
float
,
cl
::
Image2D
>
(
sigmoid_image2d_shape
[
"width"
],
sigmoid_image2d_shape
[
"height"
]);
auto
*
sigmoid_out_data
=
sigmoid_out
.
mutable_data
<
float
,
cl
::
Image2D
>
(
sigmoid_image2d_shape
[
"width"
],
sigmoid_image2d_shape
[
"height"
]);
// set context and kernel args
LOG
(
INFO
)
<<
"set context and kernel args"
;
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
buf_to_img_kernel
->
SetParam
(
BufferToImageParam
);
std
::
unique_ptr
<
KernelContext
>
buf_to_img_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
buf_to_img_context
->
As
<
OpenCLContext
>
()));
buf_to_img_kernel
->
SetContext
(
std
::
move
(
buf_to_img_context
));
img_to_buf_kernel
->
SetParam
(
ImageToBufferParam
);
std
::
unique_ptr
<
KernelContext
>
img_to_buf_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
img_to_buf_context
->
As
<
OpenCLContext
>
()));
img_to_buf_kernel
->
SetContext
(
std
::
move
(
img_to_buf_context
));
sigmoid_img_kernel
->
SetParam
(
SigmoidParam
);
std
::
unique_ptr
<
KernelContext
>
sigmoid_img_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
sigmoid_img_context
->
As
<
OpenCLContext
>
()));
sigmoid_img_kernel
->
SetContext
(
std
::
move
(
sigmoid_img_context
));
// run kernels
LOG
(
INFO
)
<<
"run kernel: buf_to_img_kernel"
;
buf_to_img_kernel
->
Launch
();
LOG
(
INFO
)
<<
"run kernel: relu_img_kernel"
;
sigmoid_img_kernel
->
Launch
();
LOG
(
INFO
)
<<
"run kernel: img_to_buf_kernel"
;
img_to_buf_kernel
->
Launch
();
// compute ref cpu
sigmoid_compute_ref
<
float
>
(
mapped_x
,
x_dim
,
y_data_ref
);
// result
#ifdef PRINT_RESULT
LOG
(
INFO
)
<<
"---- print kernel result (input -> output) ----"
;
for
(
int
eidx
=
0
;
eidx
<
x_dim
.
production
();
++
eidx
)
{
std
::
cout
<<
mapped_x
[
eidx
]
<<
" -> "
<<
mapped_y
[
eidx
]
<<
std
::
endl
;
}
#endif // PRINT_RESULT
// check result: compare kernel output and cpu output(y_data_ref)
for
(
int
eidx
=
0
;
eidx
<
x_dim
.
production
();
eidx
++
)
{
EXPECT_NEAR
(
y_data_ref
[
eidx
],
mapped_y
[
eidx
],
1e-6
);
if
(
abs
(
y_data_ref
[
eidx
]
-
mapped_y
[
eidx
])
>
1e-6
)
{
LOG
(
INFO
)
<<
"1st diff in this case at eidx[from 0]:"
<<
eidx
<<
" / "
<<
x_dim
.
production
()
<<
", y_data_ref["
<<
eidx
<<
"]:"
<<
y_data_ref
[
eidx
]
<<
", mapped_y["
<<
eidx
<<
"]:"
<<
mapped_y
[
eidx
]
<<
", mapped_x["
<<
eidx
<<
"]: "
<<
mapped_x
[
eidx
];
break
;
}
}
// free
LOG
(
INFO
)
<<
"free: unmap x, y"
;
TargetWrapperCL
::
Unmap
(
x_data
,
mapped_x
);
TargetWrapperCL
::
Unmap
(
y_data
,
mapped_y
);
#ifdef LOOP_TEST
}
// w
}
// h
}
// c
}
// n
#else
// nothing to do.
#endif
}
#define SIGMOID_FP16_LOOP_TEST
// #define SIGMOID_FP16_PRINT_RESULT
TEST
(
sigmoid_image2d_fp16
,
compute
)
{
LOG
(
INFO
)
<<
"main steps of test: host -> layout(buf2img) -> sigmoid(img) -> "
"layout(img2buf) "
"-> host"
;
#ifdef SIGMOID_FP16_LOOP_TEST
for
(
int
n
=
1
;
n
<=
100
;
n
+=
33
)
{
for
(
auto
c
:
{
1
,
3
})
{
for
(
int
h
=
12
;
h
<=
100
;
h
+=
13
)
{
for
(
int
w
=
12
;
w
<=
100
;
w
+=
25
)
{
#else
const
int
n
=
1
;
const
int
c
=
2
;
const
int
h
=
3
;
const
int
w
=
4
;
#endif // SIGMOID_FP16_LOOP_TEST
LOG
(
INFO
)
<<
"======== input shape[n,c,h,w]:"
<<
n
<<
" "
<<
c
<<
" "
<<
h
<<
" "
<<
w
<<
" ========"
;
// set layout kernels
auto
buf_to_img_kernels
=
KernelRegistry
::
Global
().
Create
(
"layout"
,
TARGET
(
kOpenCL
),
PRECISION
(
kAny
),
DATALAYOUT
(
kImageDefault
));
auto
img_to_buf_kernels
=
KernelRegistry
::
Global
().
Create
(
"layout"
,
TARGET
(
kOpenCL
),
PRECISION
(
kAny
),
DATALAYOUT
(
kNCHW
));
auto
sigmoid_img_kernels
=
KernelRegistry
::
Global
().
Create
(
"sigmoid"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
buf_to_img_kernels
.
empty
());
ASSERT_FALSE
(
buf_to_img_kernels
.
empty
());
ASSERT_FALSE
(
sigmoid_img_kernels
.
empty
());
auto
buf_to_img_kernel
=
std
::
move
(
buf_to_img_kernels
.
front
());
auto
img_to_buf_kernel
=
std
::
move
(
img_to_buf_kernels
.
front
());
auto
sigmoid_img_kernel
=
std
::
move
(
sigmoid_img_kernels
.
front
());
LOG
(
INFO
)
<<
"get 1st kernel: "
<<
buf_to_img_kernel
->
doc
();
LOG
(
INFO
)
<<
"get 2nd kernel: "
<<
img_to_buf_kernel
->
doc
();
LOG
(
INFO
)
<<
"get 3rd kernel: "
<<
sigmoid_img_kernel
->
doc
();
// set tensors about op param
LOG
(
INFO
)
<<
"set tensors about op param"
;
// layout(buf->img): x -> sigmoid_in
// sigmoid(img): sigmoid_in -> sigmoid_out
// layout(img->buf): sigmoid_out -> y
lite
::
Tensor
x
,
y
,
sigmoid_in
,
sigmoid_out
,
y_ref
;
operators
::
LayoutParam
BufferToImageParam
;
operators
::
LayoutParam
ImageToBufferParam
;
BufferToImageParam
.
x
=
&
x
;
BufferToImageParam
.
y
=
&
sigmoid_in
;
ImageToBufferParam
.
x
=
&
sigmoid_out
;
ImageToBufferParam
.
y
=
&
y
;
operators
::
ActivationParam
SigmoidParam
;
SigmoidParam
.
X
=
&
sigmoid_in
;
SigmoidParam
.
Out
=
&
sigmoid_out
;
const
DDim
x_dim
=
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
n
,
c
,
h
,
w
});
x
.
Resize
(
x_dim
);
y
.
Resize
(
x_dim
);
sigmoid_in
.
Resize
(
x_dim
);
sigmoid_out
.
Resize
(
x_dim
);
y_ref
.
Resize
(
x_dim
);
auto
sigmoid_image2d_shape
=
paddle
::
lite
::
kernels
::
opencl
::
InitImageDimInfoWith
(
x_dim
);
// initialize tensors
LOG
(
INFO
)
<<
"initialize tensors"
;
auto
*
x_data
=
x
.
mutable_data
<
float
,
cl
::
Buffer
>
(
TARGET
(
kOpenCL
));
auto
*
y_data
=
y
.
mutable_data
<
float
,
cl
::
Buffer
>
(
TARGET
(
kOpenCL
));
auto
*
y_data_ref
=
y_ref
.
mutable_data
<
float
>
(
TARGET
(
kARM
));
auto
*
mapped_x
=
static_cast
<
float
*>
(
TargetWrapperCL
::
Map
(
x_data
,
0
,
sizeof
(
float
)
*
x_dim
.
production
()));
auto
*
mapped_y
=
static_cast
<
float
*>
(
TargetWrapperCL
::
Map
(
y_data
,
0
,
sizeof
(
float
)
*
x_dim
.
production
()));
std
::
default_random_engine
engine
;
std
::
uniform_real_distribution
<
float
>
dist
(
-
1
,
1
);
for
(
int
i
=
0
;
i
<
x_dim
.
production
();
++
i
)
{
mapped_x
[
i
]
=
static_cast
<
float
>
(
dist
(
engine
));
}
auto
*
sigmoid_in_data
=
sigmoid_in
.
mutable_data
<
int16_t
,
cl
::
Image2D
>
(
sigmoid_image2d_shape
[
"width"
],
sigmoid_image2d_shape
[
"height"
]);
auto
*
sigmoid_out_data
=
sigmoid_out
.
mutable_data
<
int16_t
,
cl
::
Image2D
>
(
sigmoid_image2d_shape
[
"width"
],
sigmoid_image2d_shape
[
"height"
]);
// set context and kernel args
LOG
(
INFO
)
<<
"set context and kernel args"
;
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
buf_to_img_kernel
->
SetParam
(
BufferToImageParam
);
std
::
unique_ptr
<
KernelContext
>
buf_to_img_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
buf_to_img_context
->
As
<
OpenCLContext
>
()));
buf_to_img_kernel
->
SetContext
(
std
::
move
(
buf_to_img_context
));
img_to_buf_kernel
->
SetParam
(
ImageToBufferParam
);
std
::
unique_ptr
<
KernelContext
>
img_to_buf_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
img_to_buf_context
->
As
<
OpenCLContext
>
()));
img_to_buf_kernel
->
SetContext
(
std
::
move
(
img_to_buf_context
));
sigmoid_img_kernel
->
SetParam
(
SigmoidParam
);
std
::
unique_ptr
<
KernelContext
>
sigmoid_img_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
sigmoid_img_context
->
As
<
OpenCLContext
>
()));
sigmoid_img_kernel
->
SetContext
(
std
::
move
(
sigmoid_img_context
));
// run kernels
LOG
(
INFO
)
<<
"run kernel: buf_to_img_kernel"
;
buf_to_img_kernel
->
Launch
();
LOG
(
INFO
)
<<
"run kernel: sigmoid_img_kernel"
;
sigmoid_img_kernel
->
Launch
();
LOG
(
INFO
)
<<
"run kernel: img_to_buf_kernel"
;
img_to_buf_kernel
->
Launch
();
// compute ref cpu
sigmoid_compute_ref
<
float
>
(
mapped_x
,
x_dim
,
y_data_ref
);
// result
#ifdef SIGMOID_FP16_PRINT_RESULT
LOG
(
INFO
)
<<
"---- print kernel result (input -> output) ----"
;
for
(
int
eidx
=
0
;
eidx
<
x_dim
.
production
();
++
eidx
)
{
std
::
cout
<<
mapped_x
[
eidx
]
<<
" -> "
<<
mapped_y
[
eidx
]
<<
std
::
endl
;
}
#endif // SIGMOID_FP16_PRINT_RESULT
// check result: compare kernel output and cpu output(y_data_ref)
for
(
int
eidx
=
0
;
eidx
<
x_dim
.
production
();
eidx
++
)
{
EXPECT_NEAR
(
y_data_ref
[
eidx
],
mapped_y
[
eidx
],
1e-3
);
if
(
abs
(
y_data_ref
[
eidx
]
-
mapped_y
[
eidx
])
>
1e-3
)
{
LOG
(
INFO
)
<<
"1st diff in this case at eidx[from 0]:"
<<
eidx
<<
" / "
<<
x_dim
.
production
()
<<
", y_data_ref["
<<
eidx
<<
"]: "
<<
y_data_ref
[
eidx
]
<<
", mapped_y["
<<
eidx
<<
"]: "
<<
mapped_y
[
eidx
]
<<
", mapped_x["
<<
eidx
<<
"]: "
<<
mapped_x
[
eidx
];
break
;
}
}
// free
LOG
(
INFO
)
<<
"free: unmap x, y"
;
TargetWrapperCL
::
Unmap
(
x_data
,
mapped_x
);
TargetWrapperCL
::
Unmap
(
y_data
,
mapped_y
);
#ifdef SIGMOID_FP16_LOOP_TEST
}
// w
}
// h
}
// c
}
// n
#else
// nothing to do.
#endif
}
}
// namespace lite
}
// namespace paddle
// sigmoid buffer
USE_LITE_KERNEL
(
sigmoid
,
kOpenCL
,
kFloat
,
kNCHW
,
def
);
// sigmoid image2d fp32
USE_LITE_KERNEL
(
layout
,
kOpenCL
,
kAny
,
kImageDefault
,
NCHW_to_ImageDefault
);
USE_LITE_KERNEL
(
layout
,
kOpenCL
,
kAny
,
kNCHW
,
ImageDefault_to_NCHW
);
USE_LITE_KERNEL
(
sigmoid
,
kOpenCL
,
kFloat
,
kImageDefault
,
ImageDefault
);
// sigmoid image2d fp16
USE_LITE_KERNEL
(
sigmoid
,
kOpenCL
,
kFP16
,
kImageDefault
,
ImageDefault
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录