layout_image_compute.cc 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/api/paddle_place.h"
18
#include "lite/backends/opencl/cl_half.h"
19 20 21 22 23 24 25 26 27 28 29 30 31
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/target_wrapper.h"
#include "lite/core/type_system.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/cp_logging.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

32 33 34 35 36
// [NCHW] -> [ImageDefault]
class LayoutComputeBufferChwToImageDefault
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kAny),
                        DATALAYOUT(kImageDefault)> {
37 38 39 40
 public:
  using param_t = operators::LayoutParam;

  void PrepareForRun() override {
41 42 43 44
    auto& param = Param<param_t>();
    if (param.process_type == 1) {
      kernel_func_name_ = "buffer_to_image2d_with_pre255";
    }
45
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
46 47
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
48
        kernel_func_name_, "image/layout_kernel.cl", build_options_);
49 50 51 52
  }

  void Run() override {
    auto& param = Param<param_t>();
53 54 55 56 57 58
    const cl::Buffer* x_data;
    if (param.process_type == 1) {
      x_data = param.x->data<uint8_t, cl::Buffer>();
    } else {
      x_data = param.x->data<float, cl::Buffer>();
    }
59 60
    auto x_dims = param.x->dims();
    auto image_shape = InitImageDimInfoWith(x_dims);
61
    auto* y_data = param.y->mutable_data<half_t, cl::Image2D>(
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        image_shape["width"], image_shape["height"]);
    auto y_dims = param.y->dims();

    // out info
    std::vector<size_t> new_dims = {1, 1, 1, 1};
    for (int tidx = 0; tidx < x_dims.size(); ++tidx) {
      new_dims[4 - x_dims.size() + tidx] = x_dims[tidx];
    }
    const int out_C = new_dims[1];
    const int out_H = new_dims[2];
    const int out_W = new_dims[3];
    const int Stride2 = out_C * out_H * out_W;
    const int Stride1 = out_H * out_W;
    const int Stride0 = out_W;

77 78 79 80
    VLOG(2) << "param.process_type:" << param.process_type;
    VLOG(2) << "x_dims:" << x_dims;
    VLOG(2) << "param.x->memory_size():" << param.x->memory_size();
    VLOG(2) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " "
81
            << new_dims[1] << " " << new_dims[2] << " " << new_dims[3];
82 83 84 85 86 87 88 89 90 91
    VLOG(2) << "y_dims:" << y_dims;
    VLOG(2) << "param.y->memory_size():" << param.y->memory_size();
    VLOG(2) << "y image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
    VLOG(2) << "out_C:" << out_C;
    VLOG(2) << "out_H:" << out_H;
    VLOG(2) << "out_W:" << out_W;
    VLOG(2) << "Stride2:" << Stride2;
    VLOG(2) << "Stride1:" << Stride1;
    VLOG(2) << "Stride0:" << Stride0;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_data);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_data);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_H));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_W));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_C));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride0));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride1));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride2));
    CL_CHECK_FATAL(status);

117
    VLOG(2) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3]
118 119 120 121 122 123 124 125 126 127 128 129 130
            << " " << (new_dims[0] * new_dims[2]);
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>((new_dims[1] + 3) / 4),
                    static_cast<cl::size_type>(new_dims[3]),
                    static_cast<cl::size_type>(new_dims[0] * new_dims[2])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
131
    context.cl_wait_list()->emplace(y_data, event_);
132 133 134
  }

  std::string doc() const override {
135
    return "Trans Layout from cl::Buffer(NCHW) to "
136
           "cl::Image2D(ImageDefault/RGBA), Float ---> FP16";
137 138 139 140
  }

 private:
  std::string kernel_func_name_{"buffer_to_image2d"};
141
  std::string build_options_{"-DCL_DTYPE_float"};
142 143 144
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

145 146 147
// [ImageDefault] -> [NCHW]
class LayoutComputeImageDefaultToBufferChw
    : public KernelLite<TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW)> {
148 149 150 151
 public:
  using param_t = operators::LayoutParam;

  void PrepareForRun() override {
152 153 154 155
    auto& param = Param<param_t>();
    if (param.process_type == 1) {
      kernel_func_name_ = "image2d_to_buffer_with_post255";
    }
156
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
157 158
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
159
        kernel_func_name_, "image/layout_kernel.cl", build_options_);
160 161 162 163
  }

  void Run() override {
    auto& param = Param<param_t>();
164 165 166 167 168 169
    const cl::Buffer* y_data;
    if (param.process_type == 1) {
      y_data = param.y->mutable_data<uint8_t, cl::Buffer>(TARGET(kOpenCL));
    } else {
      y_data = param.y->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
    }
170
    auto* x_data = param.x->data<half_t, cl::Image2D>();
171
    auto x_dims = param.x->dims();
172
    auto y_dims = param.y->dims();
173
    auto x_image_shape = InitImageDimInfoWith(x_dims);
174 175

    std::vector<size_t> new_dims = {1, 1, 1, 1};
176 177
    for (int j = 0; j < x_dims.size(); ++j) {
      new_dims[4 - x_dims.size() + j] = x_dims[j];
178 179
    }

180 181 182 183
    VLOG(2) << "param.process_type:" << param.process_type;
    VLOG(2) << "x_dims:" << x_dims;
    VLOG(2) << "param.x->memory_size():" << param.x->memory_size();
    VLOG(2) << "x_image_shape(w,h):" << x_image_shape["width"] << " "
184
            << x_image_shape["height"];
185
    VLOG(2) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " "
186
            << new_dims[1] << " " << new_dims[2] << " " << new_dims[3];
187 188
    VLOG(2) << "y_dims:" << y_dims;
    VLOG(2) << "param.y->memory_size():" << param.y->memory_size();
189

190 191 192 193 194 195
    size_t C = new_dims[1];
    size_t in_height = new_dims[2];
    size_t in_width = new_dims[3];
    int size_ch = in_height * in_width;
    int size_block = size_ch * 4;
    int size_batch = size_ch * C;
196 197 198 199 200 201 202 203 204 205

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_data);
    CL_CHECK_FATAL(status);
206
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_width));
207
    CL_CHECK_FATAL(status);
208
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_height));
209
    CL_CHECK_FATAL(status);
210
    status = kernel.setArg(++arg_idx, *y_data);
211
    CL_CHECK_FATAL(status);
212
    status = kernel.setArg(++arg_idx, static_cast<const int>(size_ch));
213
    CL_CHECK_FATAL(status);
214
    status = kernel.setArg(++arg_idx, static_cast<const int>(size_block));
215
    CL_CHECK_FATAL(status);
216
    status = kernel.setArg(++arg_idx, static_cast<const int>(size_batch));
217
    CL_CHECK_FATAL(status);
218
    status = kernel.setArg(++arg_idx, static_cast<const int>(C));
219
    CL_CHECK_FATAL(status);
220
    VLOG(2) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3]
221
            << " " << (new_dims[0] * new_dims[2]);
222
    auto global_work_size =
223 224 225
        cl::NDRange{static_cast<cl::size_type>((new_dims[1] + 3) / 4),
                    static_cast<cl::size_type>(new_dims[3]),
                    static_cast<cl::size_type>(new_dims[0] * new_dims[2])};
226 227 228 229 230 231 232 233
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
234
    context.cl_wait_list()->emplace(y_data, event_);
235 236 237
  }

  std::string doc() const override {
238
    return "Trans Layout from cl::Image2D(ImageDefault/RGBA) to "
239
           "cl::Buffer(NCHW), FP16 ---> Float";
240 241 242
  }

 private:
243 244
  std::string kernel_func_name_{"image2d_to_buffer"};
  std::string build_options_{"-DCL_DTYPE_float"};
245 246 247
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

248 249 250 251 252
// [NCHW] -> [ImageDW]
class LayoutComputeBufferChwToImage2DNw
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFloat),
                        DATALAYOUT(kImageNW)> {
253 254 255 256 257 258 259 260 261 262 263
 public:
  using param_t = operators::LayoutParam;

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "buffer/layout_kernel.cl", build_options_);
  }

  void Run() override {
    auto& param = Param<param_t>();
264
    auto* x_data = param.x->data<float, cl::Buffer>();
265 266
    auto x_dims = param.x->dims();

267 268 269 270 271 272 273 274 275
    CHECK(x_dims.size() == 4) << " Tensor dim is not 4.";
    size_t image_width = x_dims[3] * ((x_dims[0] + 3) / 4);
    size_t image_height = x_dims[1] * x_dims[2];

    auto* y_data =
        param.y->mutable_data<float, cl::Image2D>(image_width, image_height);
    auto y_dims = param.y->dims();

    // out info
276
    std::vector<size_t> new_dims = {1, 1, 1, 1};
277 278
    for (int tidx = 0; tidx < x_dims.size(); ++tidx) {
      new_dims[4 - x_dims.size() + tidx] = x_dims[tidx];
279 280
    }

281 282 283 284
    const int out_N = new_dims[0];
    const int out_C = new_dims[1];
    const int out_H = new_dims[2];
    const int out_W = new_dims[3];
285

286 287 288
    const int Stride2 = out_C * out_H * out_W;
    const int Stride1 = out_H * out_W;
    const int Stride0 = out_W;
289 290 291 292 293 294 295 296 297 298

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_data);
    CL_CHECK_FATAL(status);
299
    status = kernel.setArg(++arg_idx, *y_data);
300
    CL_CHECK_FATAL(status);
301
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_H));
302
    CL_CHECK_FATAL(status);
303
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_W));
304
    CL_CHECK_FATAL(status);
305
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_N));
306
    CL_CHECK_FATAL(status);
307
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride0));
308
    CL_CHECK_FATAL(status);
309
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride1));
310
    CL_CHECK_FATAL(status);
311
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride2));
312
    CL_CHECK_FATAL(status);
313

314
    VLOG(2) << "gws:[3D]" << ((out_N + 3) / 4) << " " << out_W << " "
315
            << (out_C * out_H);
316
    auto global_work_size =
317 318 319
        cl::NDRange{static_cast<cl::size_type>((out_N + 3) / 4),  // N blocks
                    static_cast<cl::size_type>(out_W),            // w
                    static_cast<cl::size_type>(out_C * out_H)};   // ch
320 321 322 323 324 325 326 327
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
328
    context.cl_wait_list()->emplace(y_data, event_);
329 330 331
  }

  std::string doc() const override {
332
    return "Trans Layout from cl::Buffer(NCHW) to cl::Image2D(ImageDW/CLNW)";
333 334 335
  }

 private:
336 337
  std::string kernel_func_name_{"buffer_to_image2d_nw"};
  std::string build_options_{"-DCL_DTYPE_float "};
338 339 340 341 342 343 344 345
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

346
// [NCHW] -> [ImageDefault]
347 348 349
REGISTER_LITE_KERNEL(
    layout,
    kOpenCL,
350
    kAny,
351 352 353
    kImageDefault,
    paddle::lite::kernels::opencl::LayoutComputeBufferChwToImageDefault,
    NCHW_to_ImageDefault)
354 355
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
356
                                      PRECISION(kAny),
357 358 359
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
360
                                       PRECISION(kAny),
361
                                       DATALAYOUT(kImageDefault))})
362 363
    .Finalize();

364
// [ImageDefault] -> [NCHW]
365 366 367
REGISTER_LITE_KERNEL(
    layout,
    kOpenCL,
368
    kAny,
369
    kNCHW,
370 371
    paddle::lite::kernels::opencl::LayoutComputeImageDefaultToBufferChw,
    ImageDefault_to_NCHW)
372 373
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
374
                                      PRECISION(kAny),
375
                                      DATALAYOUT(kImageDefault))})
376 377
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
378
                                       PRECISION(kAny),
379 380
                                       DATALAYOUT(kNCHW))})
    .Finalize();