PaddleMobileCPU.mm 12.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

3 4 5
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
L
liuruilong 已提交
6

7
 http://www.apache.org/licenses/LICENSE-2.0
L
liuruilong 已提交
8

9 10 11 12 13 14
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */

15
#import "PaddleMobileCPU.h"
H
hjchen2 已提交
16 17
#import "framework/load_ops.h"
#import "framework/tensor.h"
18 19 20 21
#import "io/paddle_mobile.h"
#import <memory>
#import <vector>

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
@interface PaddleMobileCPUResult()

-(void)toSetOutput:(float *)output;

-(void)toSetOutputSize:(int)outputSize;

@end

@implementation PaddleMobileCPUResult

-(void)releaseOutput {
  delete [] _output;
  _output = nil;
  _outputSize = 0;
}

-(void)toSetOutput:(float *)output {
  _output = output;
}

-(void)toSetOutputSize:(int)outputSize {
  _outputSize = outputSize;
}

46 47 48 49
-(void)toSetDim:(NSArray <NSNumber *> *)dim {
  _dim = dim;
}

50 51
@end

L
liuruilong 已提交
52 53 54 55 56 57 58 59 60 61 62
@implementation  PaddleMobileCPUConfig

-(instancetype)init {
  if (self = [super init]) {
    self.threadNum = 1;
    self.optimize = YES;
  }
  return self;
}

@end
63 64

@interface  PaddleMobileCPU()
65
{
66
  paddle_mobile::PaddleMobile<paddle_mobile::CPU, float> *pam_;
67 68
  BOOL loaded_;
}
L
liuruilong 已提交
69 70 71

@property (strong, nonatomic) PaddleMobileCPUConfig *config;

72 73
@end

74
@implementation PaddleMobileCPU
75 76 77

static std::mutex shared_mutex;

L
liuruilong 已提交
78
- (instancetype)initWithConfig:(PaddleMobileCPUConfig *)config {
79
  if (self = [super init]) {
80 81
    paddle_mobile::PaddleMobileConfigInternal configInternal;
    configInternal.load_when_predict = config.loadWhenPredict;
82
    pam_ = new paddle_mobile::PaddleMobile<paddle_mobile::CPU, float>();
L
liuruilong 已提交
83 84 85 86 87 88 89 90
    _config = config;
  }
  return self;
}

-(instancetype)init {
  if (self = [super init]) {
    _config = [[PaddleMobileCPUConfig alloc] init];
R
Ray Liu 已提交
91
    pam_ = new paddle_mobile::PaddleMobile<paddle_mobile::CPU, float>();
92 93 94 95 96 97 98
  }
  return self;
}

- (void)dealloc {
  if (pam_) {
    delete pam_;
99
    pam_ = nullptr;
100 101 102 103 104 105 106 107 108 109 110 111
  }
}

+ (instancetype)sharedInstance{
  static dispatch_once_t onceToken;
  static id sharedManager = nil;
  dispatch_once(&onceToken, ^{
    sharedManager = [[[self class] alloc] init];
  });
  return sharedManager;
}

L
liuruilong 已提交
112
- (BOOL)loadModel:(NSString *)modelPath andWeightsPath:(NSString *)weighsPath {
L
liuruilong 已提交
113
  std::lock_guard<std::mutex> lock(shared_mutex);
114 115
  std::string model_path_str = std::string([modelPath UTF8String]);
  std::string weights_path_str = std::string([weighsPath UTF8String]);
L
liuruilong 已提交
116 117
  pam_->SetThreadNum(self.config.threadNum);
  if (loaded_ = pam_->Load(model_path_str, weights_path_str, self.config.optimize, false, 1, self.config.loddable)) {
118 119 120 121 122 123
    return YES;
  } else {
    return NO;
  }
}

124 125 126 127
- (BOOL)LoadCombinedMemory:(size_t)modelLen
               andModelBuf:(const uint8_t *)modelBuf
         andModelParamsLen:(size_t)combinedParamsLen
      andCombinedParamsBuf:(const uint8_t *)combinedParamsBuf {
L
liuruilong 已提交
128
  std::lock_guard<std::mutex> lock(shared_mutex);
L
liuruilong 已提交
129
  pam_->SetThreadNum(self.config.threadNum);
130
  return loaded_ = pam_->LoadCombinedMemory(modelLen, modelBuf, combinedParamsLen,
L
liuruilong 已提交
131
          const_cast<uint8_t*>(combinedParamsBuf), self.config.optimize, false, 1, self.config.loddable);
132 133
}

L
liuruilong 已提交
134
- (BOOL)load:(NSString *)modelAndWeightPath{
L
liuruilong 已提交
135
  std::lock_guard<std::mutex> lock(shared_mutex);
L
liuruilong 已提交
136
  std::string model_path_str = std::string([modelAndWeightPath UTF8String]);
L
liuruilong 已提交
137
  if (loaded_ = pam_->Load(model_path_str, self.config.optimize, false, 1, self.config.loddable)) {
L
liuruilong 已提交
138 139 140 141 142 143
    return YES;
  } else {
    return NO;
  }
}

144 145 146 147 148 149 150 151

-(void)preprocess:(CGImageRef)image
           output:(float *)output
            means:(NSArray<NSNumber *> *)means
        scale:(float)scale
        dim:(NSArray<NSNumber *> *)dim {
  std::lock_guard<std::mutex> lock(shared_mutex);

L
liuruilong 已提交
152 153 154 155
  if (means == nil) {
    means = @[@0, @0, @0];
  }

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  const int sourceRowBytes = CGImageGetBytesPerRow(image);
  const int imageWidth = CGImageGetWidth(image);
  const int imageHeight = CGImageGetHeight(image);
  const int imageChannels = 4;
  CGDataProviderRef provider = CGImageGetDataProvider(image);
  CFDataRef cfData = CGDataProviderCopyData(provider);
  const UInt8 *input = CFDataGetBytePtr(cfData);

  int wanted_input_width = dim_vec[3];
  int wanted_input_height = dim_vec[2];
  int wanted_input_channels = dim_vec[1];

  for (int c = 0; c < wanted_input_channels; ++c) {
    float *out_channel = output + c * wanted_input_height * wanted_input_width;
    for (int y = 0; y < wanted_input_height; ++y) {
      float *out_row = out_channel + y * wanted_input_width;
      for (int x = 0; x < wanted_input_width; ++x) {
        int in_row = (y * imageHeight) / wanted_input_height;
        int in_col = (x * imageWidth) / wanted_input_width;
        const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
        float *out_pos = out_row + x;
        if (c == 0) {
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 1){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 2){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }
      }
    }
  }

}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
-(void)preprocess:(const UInt8 *)input output:(float *)output imageWidth:(int)imageWidth imageHeight:(int)imageHeight imageChannels:(int)imageChannels means:(NSArray<NSNumber *> *)means scale:(float)scale dim:(std::vector<int64_t>)dim{
  if (means == nil) {
    means = @[@0, @0, @0];
  }

  int wanted_input_width = dim[3];
  int wanted_input_height = dim[2];
  int wanted_input_channels = dim[1];

  for (int c = 0; c < wanted_input_channels; ++c) {
    float *out_channel = output + c * wanted_input_height * wanted_input_width;
    for (int y = 0; y < wanted_input_height; ++y) {
      float *out_row = out_channel + y * wanted_input_width;
      for (int x = 0; x < wanted_input_width; ++x) {
        int in_row = (y * imageHeight) / wanted_input_height;
        int in_col = (x * imageWidth) / wanted_input_width;
        const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
        float *out_pos = out_row + x;
        if (c == 0) {
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 1){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 2){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }
      }
    }
  }
}

229 230 231 232 233 234 235 236 237 238
- (PaddleMobileCPUResult *)predictInput:(float *)input
                      dim:(NSArray<NSNumber *> *)dim {
  std::lock_guard<std::mutex> lock(shared_mutex);
  if (!loaded_) {
    printf("PaddleMobile doesn't be loaded yet");
    return nil;
  }

  if (dim.count != 4) {
    printf("dim must have 4 elements");
L
liuruilong 已提交
239 240
    return nil;
  }
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  paddle_mobile::framework::Tensor input_tensor;
  paddle_mobile::framework::DDim dims = paddle_mobile::framework::make_ddim(dim_vec);
  float *input_ptr = input_tensor.mutable_data<float>(dims);
  memcpy(input_ptr, input,
         numel * sizeof(float));

257 258
  pam_->Predict(input_tensor);
  std::shared_ptr<paddle_mobile::framework::Tensor> output = pam_->Fetch();
259

260 261 262 263 264 265 266 267
  auto output_dims = output->dims();
  std::vector<int64_t> output_dim_vec = vectorize(output_dims);
  NSMutableArray <NSNumber *> *ocDim = [NSMutableArray array];
  for (int i = 0; i < output_dim_vec.size(); ++i) {
    NSNumber *num = [NSNumber numberWithLongLong:output_dim_vec[i]];
    [ocDim addObject:num];
  }

268 269 270 271 272 273 274
  float *output_pointer = new float[output->numel()];

  memcpy(output_pointer, output->data<float>(),
         output->numel() * sizeof(float));

  PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
  [cpuResult toSetOutput: output_pointer];
275
  [cpuResult toSetDim: ocDim];
276 277 278 279 280
  [cpuResult toSetOutputSize: output->numel()];

  return cpuResult;
}

L
liuruilong 已提交
281
- (PaddleMobileCPUResult *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim means:(NSArray<NSNumber *> *)means scale:(float)scale{
282 283
//  printf(" predict one ");
  std::lock_guard<std::mutex> lock(shared_mutex);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  if (!loaded_) {
    printf("PaddleMobile doesn't be loaded yet");
    return nil;
  }

  if (dim.count != 4) {
    printf("dim must have 4 elements");
    return nil;
  }

  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  const int sourceRowBytes = CGImageGetBytesPerRow(image);
  const int image_width = CGImageGetWidth(image);
  const int image_height = CGImageGetHeight(image);
  const int image_channels = 4;
  CGDataProviderRef provider = CGImageGetDataProvider(image);
  CFDataRef cfData = CGDataProviderCopyData(provider);
  const UInt8 *input = CFDataGetBytePtr(cfData);

  // sample image
  float *output = (float *)malloc(numel*sizeof(float));
  [self preprocess:input output:output imageWidth:image_width imageHeight:image_height imageChannels:image_channels means:means scale:scale dim:dim_vec];
  float *dataPointer = nullptr;
  if (nullptr != output) {
    dataPointer = output;
  } else {
    return nil;
  }

321 322 323 324 325
  paddle_mobile::framework::Tensor input_tensor;
  paddle_mobile::framework::DDim dims = paddle_mobile::framework::make_ddim(dim_vec);
  float *input_ptr = input_tensor.mutable_data<float>(dims);
  memcpy(input_ptr, dataPointer,
         numel * sizeof(float));
326

327 328 329 330 331 332 333 334 335 336
  pam_->Predict(input_tensor);
  std::shared_ptr<paddle_mobile::framework::Tensor> output_tensor = pam_->Fetch();

  auto output_dims = output_tensor->dims();
  std::vector<int64_t> output_dim_vec = vectorize(output_dims);
  NSMutableArray <NSNumber *> *ocDim = [NSMutableArray array];
  for (int i = 0; i < output_dim_vec.size(); ++i) {
    NSNumber *num = [NSNumber numberWithLongLong:output_dim_vec[i]];
    [ocDim addObject:num];
  }
337

338 339 340
  float *output_pointer = new float[output_tensor->numel()];
  memcpy(output_pointer, output_tensor->data<float>(),
         output_tensor->numel() * sizeof(float));
L
liuruilong 已提交
341 342
  PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
  [cpuResult toSetOutput: output_pointer];
343 344
  [cpuResult toSetDim: ocDim];
  [cpuResult toSetOutputSize: output_tensor->numel()];
L
liuruilong 已提交
345

346 347 348
  CFRelease(cfData);
  cfData = NULL;

L
liuruilong 已提交
349
  return cpuResult;
350 351
}

L
liuruilong 已提交
352 353
- (PaddleMobileCPUResult *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim {
  return [self predict:image dim:dim means:nil scale:1];
354 355
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
- (PaddleMobileCPUResult *)fetchOutput{
  if (pam_ && loaded_) {
    auto tensorPtr = pam_->Fetch();
    float *output_pointer = new float[tensorPtr->numel()];
    memcpy(output_pointer, tensorPtr->data<float>(),
           tensorPtr->numel() * sizeof(float));
    auto dims = tensorPtr->dims();
    std::vector<int64_t> dim_vec = vectorize(dims);


    NSMutableArray <NSNumber *> *ocDim = [NSMutableArray array];
    for (int i = 0; i < dim_vec.size(); ++i) {
      NSNumber *num = [NSNumber numberWithLongLong:dim_vec[i]];
      [ocDim addObject:num];
    }

    PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
    [cpuResult toSetOutput: output_pointer];
    [cpuResult toSetDim: ocDim];
    [cpuResult toSetOutputSize: tensorPtr->numel()];

    return cpuResult;
  }
  return nil;
}

- (PaddleMobileCPUResult *)fetchOutputWithKey:(NSString *)key{
  if (pam_ && loaded_ && key.length) {
    auto tensorPtr = pam_->Fetch(std::string([key cStringUsingEncoding:NSUTF8StringEncoding]));
    float *output_pointer = new float[tensorPtr->numel()];
    memcpy(output_pointer, tensorPtr->data<float>(),
           tensorPtr->numel() * sizeof(float));

    auto dims = tensorPtr->dims();
    std::vector<int64_t> dim_vec = vectorize(dims);

    NSMutableArray <NSNumber *> *ocDim = [NSMutableArray array];
    for (int i = 0; i < dim_vec.size(); ++i) {
      NSNumber *num = [NSNumber numberWithLongLong:dim_vec[i]];
      [ocDim addObject:num];
    }

    PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
    [cpuResult toSetOutput: output_pointer];
    [cpuResult toSetDim: ocDim];
    [cpuResult toSetOutputSize: tensorPtr->numel()];

    return cpuResult;
  }
  return nil;
}

408
- (void)clear{
L
liuruilong 已提交
409
  std::lock_guard<std::mutex> lock(shared_mutex);
410 411 412
  if (pam_) {
    pam_->Clear();
  }
413 414 415
}

@end