PaddleMobileCPU.mm 12.3 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

3 4 5
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
L
liuruilong 已提交
6

7
 http://www.apache.org/licenses/LICENSE-2.0
L
liuruilong 已提交
8

9 10 11 12 13 14
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */

15
#import "PaddleMobileCPU.h"
H
hjchen2 已提交
16 17
#import "framework/load_ops.h"
#import "framework/tensor.h"
18 19 20 21
#import "io/paddle_mobile.h"
#import <memory>
#import <vector>

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
@interface PaddleMobileCPUResult()

-(void)toSetOutput:(float *)output;

-(void)toSetOutputSize:(int)outputSize;

@end

@implementation PaddleMobileCPUResult

-(void)releaseOutput {
  delete [] _output;
  _output = nil;
  _outputSize = 0;
}

-(void)toSetOutput:(float *)output {
  _output = output;
}

-(void)toSetOutputSize:(int)outputSize {
  _outputSize = outputSize;
}

46 47 48 49
-(void)toSetDim:(NSArray <NSNumber *> *)dim {
  _dim = dim;
}

50 51
@end

L
liuruilong 已提交
52 53 54 55 56 57 58 59 60 61 62
@implementation  PaddleMobileCPUConfig

-(instancetype)init {
  if (self = [super init]) {
    self.threadNum = 1;
    self.optimize = YES;
  }
  return self;
}

@end
63 64

@interface  PaddleMobileCPU()
65
{
66
  paddle_mobile::PaddleMobile<paddle_mobile::CPU, float> *pam_;
67 68
  BOOL loaded_;
}
L
liuruilong 已提交
69 70 71

@property (strong, nonatomic) PaddleMobileCPUConfig *config;

72 73
@end

74
@implementation PaddleMobileCPU
75 76 77

static std::mutex shared_mutex;

L
liuruilong 已提交
78
- (instancetype)initWithConfig:(PaddleMobileCPUConfig *)config {
79
  if (self = [super init]) {
80 81
    paddle_mobile::PaddleMobileConfigInternal configInternal;
    configInternal.load_when_predict = config.loadWhenPredict;
82
    pam_ = new paddle_mobile::PaddleMobile<paddle_mobile::CPU, float>();
L
liuruilong 已提交
83 84 85 86 87 88 89 90
    _config = config;
  }
  return self;
}

-(instancetype)init {
  if (self = [super init]) {
    _config = [[PaddleMobileCPUConfig alloc] init];
R
Ray Liu 已提交
91
    pam_ = new paddle_mobile::PaddleMobile<paddle_mobile::CPU, float>();
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  }
  return self;
}

- (void)dealloc {
  if (pam_) {
    delete pam_;
  }
}

+ (instancetype)sharedInstance{
  static dispatch_once_t onceToken;
  static id sharedManager = nil;
  dispatch_once(&onceToken, ^{
    sharedManager = [[[self class] alloc] init];
  });
  return sharedManager;
}

L
liuruilong 已提交
111
- (BOOL)loadModel:(NSString *)modelPath andWeightsPath:(NSString *)weighsPath {
112 113
  std::string model_path_str = std::string([modelPath UTF8String]);
  std::string weights_path_str = std::string([weighsPath UTF8String]);
L
liuruilong 已提交
114 115
  pam_->SetThreadNum(self.config.threadNum);
  if (loaded_ = pam_->Load(model_path_str, weights_path_str, self.config.optimize, false, 1, self.config.loddable)) {
116 117 118 119 120 121
    return YES;
  } else {
    return NO;
  }
}

122 123 124 125
- (BOOL)LoadCombinedMemory:(size_t)modelLen
               andModelBuf:(const uint8_t *)modelBuf
         andModelParamsLen:(size_t)combinedParamsLen
      andCombinedParamsBuf:(const uint8_t *)combinedParamsBuf {
L
liuruilong 已提交
126
  pam_->SetThreadNum(self.config.threadNum);
127
  return loaded_ = pam_->LoadCombinedMemory(modelLen, modelBuf, combinedParamsLen,
L
liuruilong 已提交
128
          const_cast<uint8_t*>(combinedParamsBuf), self.config.optimize, false, 1, self.config.loddable);
129 130
}

L
liuruilong 已提交
131 132
- (BOOL)load:(NSString *)modelAndWeightPath{
  std::string model_path_str = std::string([modelAndWeightPath UTF8String]);
L
liuruilong 已提交
133
  if (loaded_ = pam_->Load(model_path_str, self.config.optimize, false, 1, self.config.loddable)) {
L
liuruilong 已提交
134 135 136 137 138 139
    return YES;
  } else {
    return NO;
  }
}

140 141 142 143 144 145 146 147

-(void)preprocess:(CGImageRef)image
           output:(float *)output
            means:(NSArray<NSNumber *> *)means
        scale:(float)scale
        dim:(NSArray<NSNumber *> *)dim {
  std::lock_guard<std::mutex> lock(shared_mutex);

L
liuruilong 已提交
148 149 150 151
  if (means == nil) {
    means = @[@0, @0, @0];
  }

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  const int sourceRowBytes = CGImageGetBytesPerRow(image);
  const int imageWidth = CGImageGetWidth(image);
  const int imageHeight = CGImageGetHeight(image);
  const int imageChannels = 4;
  CGDataProviderRef provider = CGImageGetDataProvider(image);
  CFDataRef cfData = CGDataProviderCopyData(provider);
  const UInt8 *input = CFDataGetBytePtr(cfData);

  int wanted_input_width = dim_vec[3];
  int wanted_input_height = dim_vec[2];
  int wanted_input_channels = dim_vec[1];

  for (int c = 0; c < wanted_input_channels; ++c) {
    float *out_channel = output + c * wanted_input_height * wanted_input_width;
    for (int y = 0; y < wanted_input_height; ++y) {
      float *out_row = out_channel + y * wanted_input_width;
      for (int x = 0; x < wanted_input_width; ++x) {
        int in_row = (y * imageHeight) / wanted_input_height;
        int in_col = (x * imageWidth) / wanted_input_width;
        const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
        float *out_pos = out_row + x;
        if (c == 0) {
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 1){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 2){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }
      }
    }
  }

}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
-(void)preprocess:(const UInt8 *)input output:(float *)output imageWidth:(int)imageWidth imageHeight:(int)imageHeight imageChannels:(int)imageChannels means:(NSArray<NSNumber *> *)means scale:(float)scale dim:(std::vector<int64_t>)dim{
  if (means == nil) {
    means = @[@0, @0, @0];
  }

  int wanted_input_width = dim[3];
  int wanted_input_height = dim[2];
  int wanted_input_channels = dim[1];

  for (int c = 0; c < wanted_input_channels; ++c) {
    float *out_channel = output + c * wanted_input_height * wanted_input_width;
    for (int y = 0; y < wanted_input_height; ++y) {
      float *out_row = out_channel + y * wanted_input_width;
      for (int x = 0; x < wanted_input_width; ++x) {
        int in_row = (y * imageHeight) / wanted_input_height;
        int in_col = (x * imageWidth) / wanted_input_width;
        const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
        float *out_pos = out_row + x;
        if (c == 0) {
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 1){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 2){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }
      }
    }
  }
}

225 226 227 228 229 230 231 232 233 234
- (PaddleMobileCPUResult *)predictInput:(float *)input
                      dim:(NSArray<NSNumber *> *)dim {
  std::lock_guard<std::mutex> lock(shared_mutex);
  if (!loaded_) {
    printf("PaddleMobile doesn't be loaded yet");
    return nil;
  }

  if (dim.count != 4) {
    printf("dim must have 4 elements");
L
liuruilong 已提交
235 236
    return nil;
  }
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  paddle_mobile::framework::Tensor input_tensor;
  paddle_mobile::framework::DDim dims = paddle_mobile::framework::make_ddim(dim_vec);
  float *input_ptr = input_tensor.mutable_data<float>(dims);
  memcpy(input_ptr, input,
         numel * sizeof(float));

253 254
  pam_->Predict(input_tensor);
  std::shared_ptr<paddle_mobile::framework::Tensor> output = pam_->Fetch();
255

256 257 258 259 260 261 262 263
  auto output_dims = output->dims();
  std::vector<int64_t> output_dim_vec = vectorize(output_dims);
  NSMutableArray <NSNumber *> *ocDim = [NSMutableArray array];
  for (int i = 0; i < output_dim_vec.size(); ++i) {
    NSNumber *num = [NSNumber numberWithLongLong:output_dim_vec[i]];
    [ocDim addObject:num];
  }

264 265 266 267 268 269 270
  float *output_pointer = new float[output->numel()];

  memcpy(output_pointer, output->data<float>(),
         output->numel() * sizeof(float));

  PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
  [cpuResult toSetOutput: output_pointer];
271
  [cpuResult toSetDim: ocDim];
272 273 274 275 276
  [cpuResult toSetOutputSize: output->numel()];

  return cpuResult;
}

L
liuruilong 已提交
277
- (PaddleMobileCPUResult *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim means:(NSArray<NSNumber *> *)means scale:(float)scale{
278 279
//  printf(" predict one ");
  std::lock_guard<std::mutex> lock(shared_mutex);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
  if (!loaded_) {
    printf("PaddleMobile doesn't be loaded yet");
    return nil;
  }

  if (dim.count != 4) {
    printf("dim must have 4 elements");
    return nil;
  }

  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  const int sourceRowBytes = CGImageGetBytesPerRow(image);
  const int image_width = CGImageGetWidth(image);
  const int image_height = CGImageGetHeight(image);
  const int image_channels = 4;
  CGDataProviderRef provider = CGImageGetDataProvider(image);
  CFDataRef cfData = CGDataProviderCopyData(provider);
  const UInt8 *input = CFDataGetBytePtr(cfData);

  // sample image
  float *output = (float *)malloc(numel*sizeof(float));
  [self preprocess:input output:output imageWidth:image_width imageHeight:image_height imageChannels:image_channels means:means scale:scale dim:dim_vec];
  float *dataPointer = nullptr;
  if (nullptr != output) {
    dataPointer = output;
  } else {
    return nil;
  }

317 318 319 320 321
  paddle_mobile::framework::Tensor input_tensor;
  paddle_mobile::framework::DDim dims = paddle_mobile::framework::make_ddim(dim_vec);
  float *input_ptr = input_tensor.mutable_data<float>(dims);
  memcpy(input_ptr, dataPointer,
         numel * sizeof(float));
322

323 324 325 326 327 328 329 330 331 332
  pam_->Predict(input_tensor);
  std::shared_ptr<paddle_mobile::framework::Tensor> output_tensor = pam_->Fetch();

  auto output_dims = output_tensor->dims();
  std::vector<int64_t> output_dim_vec = vectorize(output_dims);
  NSMutableArray <NSNumber *> *ocDim = [NSMutableArray array];
  for (int i = 0; i < output_dim_vec.size(); ++i) {
    NSNumber *num = [NSNumber numberWithLongLong:output_dim_vec[i]];
    [ocDim addObject:num];
  }
333

334 335 336
  float *output_pointer = new float[output_tensor->numel()];
  memcpy(output_pointer, output_tensor->data<float>(),
         output_tensor->numel() * sizeof(float));
L
liuruilong 已提交
337 338
  PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
  [cpuResult toSetOutput: output_pointer];
339 340
  [cpuResult toSetDim: ocDim];
  [cpuResult toSetOutputSize: output_tensor->numel()];
L
liuruilong 已提交
341

342 343 344
  CFRelease(cfData);
  cfData = NULL;

L
liuruilong 已提交
345
  return cpuResult;
346 347
}

L
liuruilong 已提交
348 349
- (PaddleMobileCPUResult *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim {
  return [self predict:image dim:dim means:nil scale:1];
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
- (PaddleMobileCPUResult *)fetchOutput{
  if (pam_ && loaded_) {
    auto tensorPtr = pam_->Fetch();
    float *output_pointer = new float[tensorPtr->numel()];
    memcpy(output_pointer, tensorPtr->data<float>(),
           tensorPtr->numel() * sizeof(float));
    auto dims = tensorPtr->dims();
    std::vector<int64_t> dim_vec = vectorize(dims);


    NSMutableArray <NSNumber *> *ocDim = [NSMutableArray array];
    for (int i = 0; i < dim_vec.size(); ++i) {
      NSNumber *num = [NSNumber numberWithLongLong:dim_vec[i]];
      [ocDim addObject:num];
    }

    PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
    [cpuResult toSetOutput: output_pointer];
    [cpuResult toSetDim: ocDim];
    [cpuResult toSetOutputSize: tensorPtr->numel()];

    return cpuResult;
  }
  return nil;
}

- (PaddleMobileCPUResult *)fetchOutputWithKey:(NSString *)key{
  if (pam_ && loaded_ && key.length) {
    auto tensorPtr = pam_->Fetch(std::string([key cStringUsingEncoding:NSUTF8StringEncoding]));
    float *output_pointer = new float[tensorPtr->numel()];
    memcpy(output_pointer, tensorPtr->data<float>(),
           tensorPtr->numel() * sizeof(float));

    auto dims = tensorPtr->dims();
    std::vector<int64_t> dim_vec = vectorize(dims);

    NSMutableArray <NSNumber *> *ocDim = [NSMutableArray array];
    for (int i = 0; i < dim_vec.size(); ++i) {
      NSNumber *num = [NSNumber numberWithLongLong:dim_vec[i]];
      [ocDim addObject:num];
    }

    PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
    [cpuResult toSetOutput: output_pointer];
    [cpuResult toSetDim: ocDim];
    [cpuResult toSetOutputSize: tensorPtr->numel()];

    return cpuResult;
  }
  return nil;
}

404
- (void)clear{
405 406 407
  if (pam_) {
    pam_->Clear();
  }
408 409 410
}

@end